FloatDensity.java
package org.djunits.value.vfloat.scalar;
import org.djunits.unit.DensityUnit;
import org.djunits.unit.DimensionlessUnit;
import org.djunits.unit.MassUnit;
/**
* Easy access methods for the Density FloatScalar, which is relative by definition. An example is Speed. Instead of:
*
* <pre>
* FloatScalar.Rel<DensityUnit> value = new FloatScalar.Rel<DensityUnit>(100.0, DensityUnit.SI);
* </pre>
*
* we can now write:
*
* <pre>
* FloatDensity value = new FloatDensity(100.0, DensityUnit.SI);
* </pre>
*
* The compiler will automatically recognize which units belong to which quantity, and whether the quantity type and the unit
* used are compatible.
* <p>
* Copyright (c) 2013-2019 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
* BSD-style license. See <a href="http://djunits.org/docs/license.html">DJUNITS License</a>.
* <p>
* $LastChangedDate: 2019-01-18 00:35:01 +0100 (Fri, 18 Jan 2019) $, @version $Revision: 324 $, by $Author: averbraeck $,
* initial version Sep 5, 2015 <br>
* @author <a href="http://www.tbm.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="http://www.tudelft.nl/pknoppers">Peter Knoppers</a>
*/
public class FloatDensity extends AbstractFloatScalarRel<DensityUnit, FloatDensity>
{
/** */
private static final long serialVersionUID = 20150901L;
/** constant with value zero. */
public static final FloatDensity ZERO = new FloatDensity(0.0f, DensityUnit.SI);
/** constant with value NaN. */
@SuppressWarnings("checkstyle:constantname")
public static final FloatDensity NaN = new FloatDensity(Float.NaN, DensityUnit.SI);
/** constant with value POSITIVE_INFINITY. */
public static final FloatDensity POSITIVE_INFINITY = new FloatDensity(Float.POSITIVE_INFINITY, DensityUnit.SI);
/** constant with value NEGATIVE_INFINITY. */
public static final FloatDensity NEGATIVE_INFINITY = new FloatDensity(Float.NEGATIVE_INFINITY, DensityUnit.SI);
/** constant with value MAX_VALUE. */
public static final FloatDensity POS_MAXVALUE = new FloatDensity(Float.MAX_VALUE, DensityUnit.SI);
/** constant with value -MAX_VALUE. */
public static final FloatDensity NEG_MAXVALUE = new FloatDensity(-Float.MAX_VALUE, DensityUnit.SI);
/**
* Construct FloatDensity scalar.
* @param value float; float value
* @param unit DensityUnit; unit for the float value
*/
public FloatDensity(final float value, final DensityUnit unit)
{
super(value, unit);
}
/**
* Construct FloatDensity scalar.
* @param value FloatDensity; Scalar from which to construct this instance
*/
public FloatDensity(final FloatDensity value)
{
super(value);
}
/**
* Construct FloatDensity scalar using a double value.
* @param value double; double value
* @param unit DensityUnit; unit for the resulting float value
*/
public FloatDensity(final double value, final DensityUnit unit)
{
super((float) value, unit);
}
/** {@inheritDoc} */
@Override
public final FloatDensity instantiateRel(final float value, final DensityUnit unit)
{
return new FloatDensity(value, unit);
}
/**
* Construct FloatDensity scalar.
* @param value float; float value in SI units
* @return the new scalar with the SI value
*/
public static final FloatDensity createSI(final float value)
{
return new FloatDensity(value, DensityUnit.SI);
}
/**
* Interpolate between two values.
* @param zero FloatDensity; the low value
* @param one FloatDensity; the high value
* @param ratio float; the ratio between 0 and 1, inclusive
* @return a Scalar at the ratio between
*/
public static FloatDensity interpolate(final FloatDensity zero, final FloatDensity one, final float ratio)
{
return new FloatDensity(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getUnit()) * ratio, zero.getUnit());
}
/**
* Return the maximum value of two relative scalars.
* @param r1 FloatDensity; the first scalar
* @param r2 FloatDensity; the second scalar
* @return the maximum value of two relative scalars
*/
public static FloatDensity max(final FloatDensity r1, final FloatDensity r2)
{
return (r1.gt(r2)) ? r1 : r2;
}
/**
* Return the maximum value of more than two relative scalars.
* @param r1 FloatDensity; the first scalar
* @param r2 FloatDensity; the second scalar
* @param rn FloatDensity...; the other scalars
* @return the maximum value of more than two relative scalars
*/
public static FloatDensity max(final FloatDensity r1, final FloatDensity r2, final FloatDensity... rn)
{
FloatDensity maxr = (r1.gt(r2)) ? r1 : r2;
for (FloatDensity r : rn)
{
if (r.gt(maxr))
{
maxr = r;
}
}
return maxr;
}
/**
* Return the minimum value of two relative scalars.
* @param r1 FloatDensity; the first scalar
* @param r2 FloatDensity; the second scalar
* @return the minimum value of two relative scalars
*/
public static FloatDensity min(final FloatDensity r1, final FloatDensity r2)
{
return (r1.lt(r2)) ? r1 : r2;
}
/**
* Return the minimum value of more than two relative scalars.
* @param r1 FloatDensity; the first scalar
* @param r2 FloatDensity; the second scalar
* @param rn FloatDensity...; the other scalars
* @return the minimum value of more than two relative scalars
*/
public static FloatDensity min(final FloatDensity r1, final FloatDensity r2, final FloatDensity... rn)
{
FloatDensity minr = (r1.lt(r2)) ? r1 : r2;
for (FloatDensity r : rn)
{
if (r.lt(minr))
{
minr = r;
}
}
return minr;
}
/**
* Calculate the division of FloatDensity and FloatDensity, which results in a FloatDimensionless scalar.
* @param v FloatDensity; FloatDensity scalar
* @return FloatDimensionless scalar as a division of FloatDensity and FloatDensity
*/
public final FloatDimensionless divideBy(final FloatDensity v)
{
return new FloatDimensionless(this.si / v.si, DimensionlessUnit.SI);
}
/**
* Calculate the multiplication of FloatDensity and FloatVolume, which results in a FloatMass scalar.
* @param v FloatVolume; FloatDensity scalar
* @return FloatMass scalar as a multiplication of FloatDensity and FloatVolume
*/
public final FloatMass multiplyBy(final FloatVolume v)
{
return new FloatMass(this.si * v.si, MassUnit.SI);
}
}