FloatMatrix.java
package org.djunits.value.vfloat.matrix;
import org.djunits.unit.AbsoluteLinearUnit;
import org.djunits.unit.Unit;
import org.djunits.value.StorageType;
import org.djunits.value.ValueException;
import org.djunits.value.vfloat.scalar.FloatScalar;
/**
* Immutable FloatMatrix.
* <p>
* This file was generated by the djunits value classes generator, 26 jun, 2015
* <p>
* Copyright (c) 2015-2019 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
* BSD-style license. See <a href="http://djunits.org/docs/license.html">DJUNITS License</a>.
* <p>
* $LastChangedDate: 2019-01-18 00:35:01 +0100 (Fri, 18 Jan 2019) $, @version $Revision: 324 $, by $Author: averbraeck $,
* initial version 26 jun, 2015 <br>
* @author <a href="http://www.tbm.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="http://www.tudelft.nl/pknoppers">Peter Knoppers</a>
*/
public abstract class FloatMatrix
{
/**
* ABSOLUTE implementation of FloatMatrix.
* @param <AU> Absolute unit
* @param <RU> Relative unit
*/
public static class Abs<AU extends AbsoluteLinearUnit<AU, RU>, RU extends Unit<RU>> extends AbstractFloatMatrixAbs<AU, RU,
FloatMatrix.Abs<AU, RU>, FloatMatrix.Rel<RU>, MutableFloatMatrix.Abs<AU, RU>, FloatScalar.Abs<AU, RU>>
{
/** */
private static final long serialVersionUID = 20151003L;
/**
* Construct a new Absolute Immutable FloatMatrix.
* @param values float[][]; the values of the entries in the new Absolute Immutable FloatMatrix
* @param unit AU; the unit of the new Absolute Immutable FloatMatrix
* @param storageType StorageType; the data type to use (e.g., DENSE or SPARSE)
* @throws ValueException when values is null
*/
public Abs(final float[][] values, final AU unit, final StorageType storageType) throws ValueException
{
super(values, unit, storageType);
}
/**
* Construct a new Absolute Immutable FloatMatrix.
* @param values FloatScalar.Abs<AU, RU>[][]; the values of the entries in the new Absolute Immutable FloatMatrix
* @param storageType StorageType; the data type to use (e.g., DENSE or SPARSE)
* @throws ValueException when values has zero entries
*/
public Abs(final FloatScalar.Abs<AU, RU>[][] values, final StorageType storageType) throws ValueException
{
super(values, storageType);
}
/**
* Construct a new Absolute Immutable FloatMatrix.
* @param data FloatMatrixData; an internal data object
* @param unit AU; the unit
*/
Abs(final FloatMatrixData data, final AU unit)
{
super(data, unit);
}
/** {@inheritDoc} */
@Override
@SuppressWarnings("designforextension")
public FloatMatrix.Abs<AU, RU> toDense()
{
return this.data.isDense() ? this : instantiateTypeAbs(this.data.toDense(), getUnit());
}
/** {@inheritDoc} */
@Override
@SuppressWarnings("designforextension")
public FloatMatrix.Abs<AU, RU> toSparse()
{
return this.data.isSparse() ? this : instantiateTypeAbs(this.data.toSparse(), getUnit());
}
/** {@inheritDoc} */
@Override
protected final FloatMatrix.Abs<AU, RU> instantiateTypeAbs(final FloatMatrixData dmd, final AU unit)
{
return new FloatMatrix.Abs<AU, RU>(dmd, unit);
}
/** {@inheritDoc} */
@Override
protected final FloatMatrix.Rel<RU> instantiateTypeRel(final FloatMatrixData dmd, final RU unit)
{
return new FloatMatrix.Rel<RU>(dmd, unit);
}
/** {@inheritDoc} */
@Override
protected final MutableFloatMatrix.Abs<AU, RU> instantiateMutableType(final FloatMatrixData dmd, final AU unit)
{
return new MutableFloatMatrix.Abs<AU, RU>(dmd, unit);
}
/** {@inheritDoc} */
@Override
protected final FloatScalar.Abs<AU, RU> instantiateScalar(final float value, final AU unit)
{
return new FloatScalar.Abs<AU, RU>(value, unit);
}
}
/**
* RELATIVE implementation of FloatMatrix.
* @param <U> Unit the unit for which this Matrix will be created
*/
public static class Rel<U extends Unit<U>>
extends AbstractFloatMatrixRel<U, FloatMatrix.Rel<U>, MutableFloatMatrix.Rel<U>, FloatScalar.Rel<U>>
{
/** */
private static final long serialVersionUID = 20151003L;
/**
* Construct a new Relative Immutable FloatMatrix.
* @param values float[][]; the values of the entries in the new Relative Immutable FloatMatrix
* @param unit U; the unit of the new Relative Immutable FloatMatrix
* @param storageType StorageType; the data type to use (e.g., DENSE or SPARSE)
* @throws ValueException when values is null
*/
public Rel(final float[][] values, final U unit, final StorageType storageType) throws ValueException
{
super(values, unit, storageType);
}
/**
* Construct a new Relative Immutable FloatMatrix.
* @param values FloatScalar.Rel<U>[][]; the values of the entries in the new Relative Immutable FloatMatrix
* @param storageType StorageType; the data type to use (e.g., DENSE or SPARSE)
* @throws ValueException when values has zero entries
*/
public Rel(final FloatScalar.Rel<U>[][] values, final StorageType storageType) throws ValueException
{
super(values, storageType);
}
/**
* Construct a new Relative Immutable FloatMatrix.
* @param data FloatMatrixData; an internal data object
* @param unit U; the unit
*/
Rel(final FloatMatrixData data, final U unit)
{
super(data, unit);
}
/** {@inheritDoc} */
@Override
@SuppressWarnings("designforextension")
public FloatMatrix.Rel<U> toDense()
{
return this.data.isDense() ? this : instantiateType(this.data.toDense(), getUnit());
}
/** {@inheritDoc} */
@Override
@SuppressWarnings("designforextension")
public FloatMatrix.Rel<U> toSparse()
{
return this.data.isSparse() ? this : instantiateType(this.data.toSparse(), getUnit());
}
/** {@inheritDoc} */
@Override
protected final FloatMatrix.Rel<U> instantiateType(final FloatMatrixData dmd, final U unit)
{
return new FloatMatrix.Rel<U>(dmd, unit);
}
/** {@inheritDoc} */
@Override
protected final MutableFloatMatrix.Rel<U> instantiateMutableType(final FloatMatrixData dmd, final U unit)
{
return new MutableFloatMatrix.Rel<U>(dmd, unit);
}
/** {@inheritDoc} */
@Override
protected final FloatScalar.Rel<U> instantiateScalar(final float value, final U unit)
{
return new FloatScalar.Rel<U>(value, unit);
}
}
/* ============================================================================================ */
/* =========================== STATIC CALCULATION MATRIX METHODS ============================== */
/* ============================================================================================ */
/**
* Add the content of two matrices with a static method on a cell-by-cell basis; Abs + Rel = Abs.
* @param left FloatMatrix.Abs<AU,RU>; the first matrix
* @param right FloatMatrix.Rel<RU>; the second matrix
* @param <AU> the absolute unit
* @param <RU> the corresponding relative unit
* @return the sum of the two matrices
* @throws ValueException when the two matrices have unequal size, or when one of the matrices is null or not well-formed
*/
static <AU extends AbsoluteLinearUnit<AU, RU>, RU extends Unit<RU>> FloatMatrix.Abs<AU, RU> plus(
final FloatMatrix.Abs<AU, RU> left, final FloatMatrix.Rel<RU> right) throws ValueException
{
return left.mutable().plus(right);
}
/**
* Add the content of two matrices with a static method on a cell-by-cell basis; Rel + Rel = Rel.
* @param left FloatMatrix.Rel<U>; the first matrix
* @param right FloatMatrix.Rel<U>; the second matrix
* @param <U> the relative unit
* @return the sum of the two matrices
* @throws ValueException when the two matrices have unequal size, or when one of the matrices is null or not well-formed
*/
static <U extends Unit<U>> FloatMatrix.Rel<U> plus(final FloatMatrix.Rel<U> left, final FloatMatrix.Rel<U> right)
throws ValueException
{
return left.mutable().plus(right);
}
/**
* Subtract the content of two matrices with a static method on a cell-by-cell basis; Abs - Rel = Abs.
* @param left FloatMatrix.Abs<AU,RU>; the first matrix
* @param right FloatMatrix.Rel<RU>; the second matrix
* @param <AU> the absolute unit
* @param <RU> the corresponding relative unit
* @return the difference of the two matrices
* @throws ValueException when the two matrices have unequal size, or when one of the matrices is null or not well-formed
*/
static <AU extends AbsoluteLinearUnit<AU, RU>, RU extends Unit<RU>> FloatMatrix.Abs<AU, RU> minus(
final FloatMatrix.Abs<AU, RU> left, final FloatMatrix.Rel<RU> right) throws ValueException
{
return left.mutable().minus(right);
}
/**
* Subtract the content of two matrices with a static method on a cell-by-cell basis; Abs - Abs = Rel.
* @param left FloatMatrix.Abs<AU,RU>; the first matrix
* @param right FloatMatrix.Abs<AU,RU>; the second matrix
* @param <AU> the absolute unit
* @param <RU> the corresponding relative unit
* @return the difference of the two matrices
* @throws ValueException when the two matrices have unequal size, or when one of the matrices is null or not well-formed
*/
static <AU extends AbsoluteLinearUnit<AU, RU>, RU extends Unit<RU>> FloatMatrix.Rel<RU> minus(
final FloatMatrix.Abs<AU, RU> left, final FloatMatrix.Abs<AU, RU> right) throws ValueException
{
return left.mutable().minus(right);
}
/**
* Subtract the content of two matrices with a static method on a cell-by-cell basis; Rel - Rel = Rel.
* @param left FloatMatrix.Rel<U>; the first matrix
* @param right FloatMatrix.Rel<U>; the second matrix
* @param <U> the unit
* @return the difference of the two matrices
* @throws ValueException when the two matrices have unequal size, or when one of the matrices is null or not well-formed
*/
static <U extends Unit<U>> FloatMatrix.Rel<U> minus(final FloatMatrix.Rel<U> left, final FloatMatrix.Rel<U> right)
throws ValueException
{
return left.mutable().minus(right);
}
/**
* Multiply the content of two matrices with a static method on a cell-by-cell basis; Rel * Rel = Rel. The unit is not
* changed by this method.
* @param left FloatMatrix.Rel<U>; the first matrix
* @param right FloatMatrix.Rel<U>; the second matrix
* @param <U> the unit
* @return the cell-by-cell multiplication of the two matrices
* @throws ValueException when the two matrices have unequal size, or when one of the matrices is null or not well-formed
*/
static <U extends Unit<U>> FloatMatrix.Rel<U> times(final FloatMatrix.Rel<U> left, final FloatMatrix.Rel<U> right)
throws ValueException
{
return left.mutable().times(right);
}
/**
* Divide the content of two matrices with a static method on a cell-by-cell basis; Rel / Rel = Rel. The unit is not changed
* by this method.
* @param left FloatMatrix.Rel<U>; the first matrix
* @param right FloatMatrix.Rel<U>; the second matrix
* @param <U> the unit
* @return the cell-by-cell division of the two matrices
* @throws ValueException when the two matrices have unequal size, or when one of the matrices is null or not well-formed
*/
static <U extends Unit<U>> FloatMatrix.Rel<U> divide(final FloatMatrix.Rel<U> left, final FloatMatrix.Rel<U> right)
throws ValueException
{
return left.mutable().divide(right);
}
}