Volume.java
package org.djunits.value.vdouble.scalar;
import org.djunits.unit.AreaUnit;
import org.djunits.unit.DimensionlessUnit;
import org.djunits.unit.DurationUnit;
import org.djunits.unit.EnergyUnit;
import org.djunits.unit.FlowVolumeUnit;
import org.djunits.unit.LengthUnit;
import org.djunits.unit.MassUnit;
import org.djunits.unit.MoneyUnit;
import org.djunits.unit.VolumeUnit;
/**
* Easy access methods for the Volume DoubleScalar, which is relative by definition. Instead of:
*
* <pre>
* DoubleScalar.Rel<VolumeUnit> value = new DoubleScalar.Rel<VolumeUnit>(100.0, VolumeUnit.SI);
* </pre>
*
* we can now write:
*
* <pre>
* Volume value = new Volume(100.0, VolumeUnit.SI);
* </pre>
*
* The compiler will automatically recognize which units belong to which quantity, and whether the quantity type and the unit
* used are compatible.
* <p>
* Copyright (c) 2013-2019 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
* BSD-style license. See <a href="http://djunits.org/docs/license.html">DJUNITS License</a>.
* <p>
* $LastChangedDate: 2019-01-18 00:35:01 +0100 (Fri, 18 Jan 2019) $, @version $Revision: 324 $, by $Author: averbraeck $,
* initial version Sep 5, 2015 <br>
* @author <a href="http://www.tbm.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="http://www.tudelft.nl/pknoppers">Peter Knoppers</a>
*/
public class Volume extends AbstractDoubleScalarRel<VolumeUnit, Volume>
{
/** */
private static final long serialVersionUID = 20150905L;
/** constant with value zero. */
public static final Volume ZERO = new Volume(0.0, VolumeUnit.SI);
/** constant with value NaN. */
@SuppressWarnings("checkstyle:constantname")
public static final Volume NaN = new Volume(Double.NaN, VolumeUnit.SI);
/** constant with value POSITIVE_INFINITY. */
public static final Volume POSITIVE_INFINITY = new Volume(Double.POSITIVE_INFINITY, VolumeUnit.SI);
/** constant with value NEGATIVE_INFINITY. */
public static final Volume NEGATIVE_INFINITY = new Volume(Double.NEGATIVE_INFINITY, VolumeUnit.SI);
/** constant with value MAX_VALUE. */
public static final Volume POS_MAXVALUE = new Volume(Double.MAX_VALUE, VolumeUnit.SI);
/** constant with value -MAX_VALUE. */
public static final Volume NEG_MAXVALUE = new Volume(-Double.MAX_VALUE, VolumeUnit.SI);
/**
* Construct Volume scalar.
* @param value double; double value
* @param unit VolumeUnit; unit for the double value
*/
public Volume(final double value, final VolumeUnit unit)
{
super(value, unit);
}
/**
* Construct Volume scalar.
* @param value Volume; Scalar from which to construct this instance
*/
public Volume(final Volume value)
{
super(value);
}
/** {@inheritDoc} */
@Override
public final Volume instantiateRel(final double value, final VolumeUnit unit)
{
return new Volume(value, unit);
}
/**
* Construct Volume scalar.
* @param value double; double value in SI units
* @return the new scalar with the SI value
*/
public static final Volume createSI(final double value)
{
return new Volume(value, VolumeUnit.SI);
}
/**
* Interpolate between two values.
* @param zero Volume; the low value
* @param one Volume; the high value
* @param ratio double; the ratio between 0 and 1, inclusive
* @return a Scalar at the ratio between
*/
public static Volume interpolate(final Volume zero, final Volume one, final double ratio)
{
return new Volume(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getUnit()) * ratio, zero.getUnit());
}
/**
* Return the maximum value of two relative scalars.
* @param r1 Volume; the first scalar
* @param r2 Volume; the second scalar
* @return the maximum value of two relative scalars
*/
public static Volume max(final Volume r1, final Volume r2)
{
return (r1.gt(r2)) ? r1 : r2;
}
/**
* Return the maximum value of more than two relative scalars.
* @param r1 Volume; the first scalar
* @param r2 Volume; the second scalar
* @param rn Volume...; the other scalars
* @return the maximum value of more than two relative scalars
*/
public static Volume max(final Volume r1, final Volume r2, final Volume... rn)
{
Volume maxr = (r1.gt(r2)) ? r1 : r2;
for (Volume r : rn)
{
if (r.gt(maxr))
{
maxr = r;
}
}
return maxr;
}
/**
* Return the minimum value of two relative scalars.
* @param r1 Volume; the first scalar
* @param r2 Volume; the second scalar
* @return the minimum value of two relative scalars
*/
public static Volume min(final Volume r1, final Volume r2)
{
return (r1.lt(r2)) ? r1 : r2;
}
/**
* Return the minimum value of more than two relative scalars.
* @param r1 Volume; the first scalar
* @param r2 Volume; the second scalar
* @param rn Volume...; the other scalars
* @return the minimum value of more than two relative scalars
*/
public static Volume min(final Volume r1, final Volume r2, final Volume... rn)
{
Volume minr = (r1.lt(r2)) ? r1 : r2;
for (Volume r : rn)
{
if (r.lt(minr))
{
minr = r;
}
}
return minr;
}
/**
* Calculate the division of Volume and Volume, which results in a Dimensionless scalar.
* @param v Volume; Volume scalar
* @return Dimensionless scalar as a division of Volume and Volume
*/
public final Dimensionless divideBy(final Volume v)
{
return new Dimensionless(this.si / v.si, DimensionlessUnit.SI);
}
/**
* Calculate the multiplication of Volume and Density, which results in a Mass scalar.
* @param v Density; Volume scalar
* @return Mass scalar as a multiplication of Volume and Density
*/
public final Mass multiplyBy(final Density v)
{
return new Mass(this.si * v.si, MassUnit.SI);
}
/**
* Calculate the multiplication of Volume and Pressure, which results in a Energy scalar.
* @param v Pressure; Volume scalar
* @return Energy scalar as a multiplication of Volume and Pressure
*/
public final Energy multiplyBy(final Pressure v)
{
return new Energy(this.si * v.si, EnergyUnit.SI);
}
/**
* Calculate the division of Volume and Length, which results in a Area scalar.
* @param v Length; Volume scalar
* @return Area scalar as a division of Volume and Length
*/
public final Area divideBy(final Length v)
{
return new Area(this.si / v.si, AreaUnit.SI);
}
/**
* Calculate the division of Volume and Area, which results in a Length scalar.
* @param v Area; Volume scalar
* @return Length scalar as a division of Volume and Area
*/
public final Length divideBy(final Area v)
{
return new Length(this.si / v.si, LengthUnit.SI);
}
/**
* Calculate the multiplication of Volume and LinearDensity, which results in a Area scalar.
* @param v LinearDensity; Volume scalar
* @return Area scalar as a multiplication of Volume and LinearDensity
*/
public final Area multiplyBy(final LinearDensity v)
{
return new Area(this.si * v.si, AreaUnit.SI);
}
/**
* Calculate the division of Volume and Duration, which results in a FlowVolume scalar.
* @param v Duration; Volume scalar
* @return FlowVolume scalar as a division of Volume and Duration
*/
public final FlowVolume divideBy(final Duration v)
{
return new FlowVolume(this.si / v.si, FlowVolumeUnit.SI);
}
/**
* Calculate the division of Volume and FlowVolume, which results in a Duration scalar.
* @param v FlowVolume; Volume scalar
* @return Duration scalar as a division of Volume and FlowVolume
*/
public final Duration divideBy(final FlowVolume v)
{
return new Duration(this.si / v.si, DurationUnit.SI);
}
/**
* Calculate the multiplication of Volume and MoneyPerVolume, which results in a Money scalar.
* @param v MoneyPerVolume; Volume scalar
* @return Money scalar as a multiplication of Volume and MoneyPerVolume
*/
public final Money multiplyBy(final MoneyPerVolume v)
{
return new Money(this.si * v.si, MoneyUnit.getStandardMoneyUnit());
}
}