Mass.java
package org.djunits.value.vdouble.scalar;
import org.djunits.unit.DensityUnit;
import org.djunits.unit.DimensionlessUnit;
import org.djunits.unit.DurationUnit;
import org.djunits.unit.FlowMassUnit;
import org.djunits.unit.ForceUnit;
import org.djunits.unit.MassUnit;
import org.djunits.unit.MoneyUnit;
import org.djunits.unit.VolumeUnit;
/**
* Easy access methods for the Mass DoubleScalar, which is relative by definition. Instead of:
*
* <pre>
* DoubleScalar.Rel<MassUnit> value = new DoubleScalar.Rel<MassUnit>(100.0, MassUnit.SI);
* </pre>
*
* we can now write:
*
* <pre>
* Mass value = new Mass(100.0, MassUnit.SI);
* </pre>
*
* The compiler will automatically recognize which units belong to which quantity, and whether the quantity type and the unit
* used are compatible.
* <p>
* Copyright (c) 2013-2019 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
* BSD-style license. See <a href="http://djunits.org/docs/license.html">DJUNITS License</a>.
* <p>
* $LastChangedDate: 2019-01-18 00:35:01 +0100 (Fri, 18 Jan 2019) $, @version $Revision: 324 $, by $Author: averbraeck $,
* initial version Sep 5, 2015 <br>
* @author <a href="http://www.tbm.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="http://www.tudelft.nl/pknoppers">Peter Knoppers</a>
*/
public class Mass extends AbstractDoubleScalarRel<MassUnit, Mass>
{
/** */
private static final long serialVersionUID = 20150905L;
/** constant with value zero. */
public static final Mass ZERO = new Mass(0.0, MassUnit.SI);
/** constant with value NaN. */
@SuppressWarnings("checkstyle:constantname")
public static final Mass NaN = new Mass(Double.NaN, MassUnit.SI);
/** constant with value POSITIVE_INFINITY. */
public static final Mass POSITIVE_INFINITY = new Mass(Double.POSITIVE_INFINITY, MassUnit.SI);
/** constant with value NEGATIVE_INFINITY. */
public static final Mass NEGATIVE_INFINITY = new Mass(Double.NEGATIVE_INFINITY, MassUnit.SI);
/** constant with value MAX_VALUE. */
public static final Mass POS_MAXVALUE = new Mass(Double.MAX_VALUE, MassUnit.SI);
/** constant with value -MAX_VALUE. */
public static final Mass NEG_MAXVALUE = new Mass(-Double.MAX_VALUE, MassUnit.SI);
/**
* Construct Mass scalar.
* @param value double; double value
* @param unit MassUnit; unit for the double value
*/
public Mass(final double value, final MassUnit unit)
{
super(value, unit);
}
/**
* Construct Mass scalar.
* @param value Mass; Scalar from which to construct this instance
*/
public Mass(final Mass value)
{
super(value);
}
/** {@inheritDoc} */
@Override
public final Mass instantiateRel(final double value, final MassUnit unit)
{
return new Mass(value, unit);
}
/**
* Construct Mass scalar.
* @param value double; double value in SI units
* @return the new scalar with the SI value
*/
public static final Mass createSI(final double value)
{
return new Mass(value, MassUnit.SI);
}
/**
* Interpolate between two values.
* @param zero Mass; the low value
* @param one Mass; the high value
* @param ratio double; the ratio between 0 and 1, inclusive
* @return a Scalar at the ratio between
*/
public static Mass interpolate(final Mass zero, final Mass one, final double ratio)
{
return new Mass(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getUnit()) * ratio, zero.getUnit());
}
/**
* Return the maximum value of two relative scalars.
* @param r1 Mass; the first scalar
* @param r2 Mass; the second scalar
* @return the maximum value of two relative scalars
*/
public static Mass max(final Mass r1, final Mass r2)
{
return (r1.gt(r2)) ? r1 : r2;
}
/**
* Return the maximum value of more than two relative scalars.
* @param r1 Mass; the first scalar
* @param r2 Mass; the second scalar
* @param rn Mass...; the other scalars
* @return the maximum value of more than two relative scalars
*/
public static Mass max(final Mass r1, final Mass r2, final Mass... rn)
{
Mass maxr = (r1.gt(r2)) ? r1 : r2;
for (Mass r : rn)
{
if (r.gt(maxr))
{
maxr = r;
}
}
return maxr;
}
/**
* Return the minimum value of two relative scalars.
* @param r1 Mass; the first scalar
* @param r2 Mass; the second scalar
* @return the minimum value of two relative scalars
*/
public static Mass min(final Mass r1, final Mass r2)
{
return (r1.lt(r2)) ? r1 : r2;
}
/**
* Return the minimum value of more than two relative scalars.
* @param r1 Mass; the first scalar
* @param r2 Mass; the second scalar
* @param rn Mass...; the other scalars
* @return the minimum value of more than two relative scalars
*/
public static Mass min(final Mass r1, final Mass r2, final Mass... rn)
{
Mass minr = (r1.lt(r2)) ? r1 : r2;
for (Mass r : rn)
{
if (r.lt(minr))
{
minr = r;
}
}
return minr;
}
/**
* Calculate the division of Mass and Mass, which results in a Dimensionless scalar.
* @param v Mass; Mass scalar
* @return Dimensionless scalar as a division of Mass and Mass
*/
public final Dimensionless divideBy(final Mass v)
{
return new Dimensionless(this.si / v.si, DimensionlessUnit.SI);
}
/**
* Calculate the division of Mass and FlowMass, which results in a Duration scalar.
* @param v FlowMass; Mass scalar
* @return Duration scalar as a division of Mass and FlowMass
*/
public final Duration divideBy(final FlowMass v)
{
return new Duration(this.si / v.si, DurationUnit.SI);
}
/**
* Calculate the division of Mass and Duration, which results in a FlowMass scalar.
* @param v Duration; Mass scalar
* @return FlowMass scalar as a division of Mass and Duration
*/
public final FlowMass divideBy(final Duration v)
{
return new FlowMass(this.si / v.si, FlowMassUnit.SI);
}
/**
* Calculate the multiplication of Mass and Acceleration, which results in a Force scalar.
* @param v Acceleration; Mass scalar
* @return Force scalar as a multiplication of Mass and Acceleration
*/
public final Force multiplyBy(final Acceleration v)
{
return new Force(this.si * v.si, ForceUnit.SI);
}
/**
* Calculate the multiplication of Mass and Frequency, which results in a FlowMass scalar.
* @param v Frequency; Mass scalar
* @return FlowMass scalar as a multiplication of Mass and Frequency
*/
public final FlowMass multiplyBy(final Frequency v)
{
return new FlowMass(this.si * v.si, FlowMassUnit.SI);
}
/**
* Calculate the division of Mass and Density, which results in a Volume scalar.
* @param v Density; Mass scalar
* @return Volume scalar as a division of Mass and Density
*/
public final Volume divideBy(final Density v)
{
return new Volume(this.si / v.si, VolumeUnit.SI);
}
/**
* Calculate the division of Mass and Volume, which results in a Density scalar.
* @param v Volume; Mass scalar
* @return Density scalar as a division of Mass and Volume
*/
public final Density divideBy(final Volume v)
{
return new Density(this.si / v.si, DensityUnit.SI);
}
/**
* Calculate the multiplication of Mass and MoneyPerMass, which results in a Money scalar.
* @param v MoneyPerMass; Mass scalar
* @return Money scalar as a multiplication of Mass and MoneyPerMass
*/
public final Money multiplyBy(final MoneyPerMass v)
{
return new Money(this.si * v.si, MoneyUnit.getStandardMoneyUnit());
}
}