FlowVolume.java
package org.djunits.value.vdouble.scalar;
import org.djunits.unit.AreaUnit;
import org.djunits.unit.DimensionlessUnit;
import org.djunits.unit.FlowVolumeUnit;
import org.djunits.unit.FrequencyUnit;
import org.djunits.unit.SpeedUnit;
import org.djunits.unit.VolumeUnit;
/**
* Easy access methods for the FlowVolume DoubleScalar, which is relative by definition. Instead of:
*
* <pre>
* DoubleScalar.Rel<FlowVolumeUnit> value = new DoubleScalar.Rel<FlowVolumeUnit>(100.0, FlowVolumeUnit.SI);
* </pre>
*
* we can now write:
*
* <pre>
* FlowVolume value = new FlowVolume(100.0, FlowVolumeUnit.SI);
* </pre>
*
* The compiler will automatically recognize which units belong to which quantity, and whether the quantity type and the unit
* used are compatible.
* <p>
* Copyright (c) 2013-2019 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
* BSD-style license. See <a href="http://djunits.org/docs/license.html">DJUNITS License</a>.
* <p>
* $LastChangedDate: 2019-01-18 00:35:01 +0100 (Fri, 18 Jan 2019) $, @version $Revision: 324 $, by $Author: averbraeck $,
* initial version Sep 5, 2015 <br>
* @author <a href="http://www.tbm.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="http://www.tudelft.nl/pknoppers">Peter Knoppers</a>
*/
public class FlowVolume extends AbstractDoubleScalarRel<FlowVolumeUnit, FlowVolume>
{
/** */
private static final long serialVersionUID = 20150905L;
/** constant with value zero. */
public static final FlowVolume ZERO = new FlowVolume(0.0, FlowVolumeUnit.SI);
/** constant with value NaN. */
@SuppressWarnings("checkstyle:constantname")
public static final FlowVolume NaN = new FlowVolume(Double.NaN, FlowVolumeUnit.SI);
/** constant with value POSITIVE_INFINITY. */
public static final FlowVolume POSITIVE_INFINITY = new FlowVolume(Double.POSITIVE_INFINITY, FlowVolumeUnit.SI);
/** constant with value NEGATIVE_INFINITY. */
public static final FlowVolume NEGATIVE_INFINITY = new FlowVolume(Double.NEGATIVE_INFINITY, FlowVolumeUnit.SI);
/** constant with value MAX_VALUE. */
public static final FlowVolume POS_MAXVALUE = new FlowVolume(Double.MAX_VALUE, FlowVolumeUnit.SI);
/** constant with value -MAX_VALUE. */
public static final FlowVolume NEG_MAXVALUE = new FlowVolume(-Double.MAX_VALUE, FlowVolumeUnit.SI);
/**
* Construct FlowVolume scalar.
* @param value double; double value
* @param unit FlowVolumeUnit; unit for the double value
*/
public FlowVolume(final double value, final FlowVolumeUnit unit)
{
super(value, unit);
}
/**
* Construct FlowVolume scalar.
* @param value FlowVolume; Scalar from which to construct this instance
*/
public FlowVolume(final FlowVolume value)
{
super(value);
}
/** {@inheritDoc} */
@Override
public final FlowVolume instantiateRel(final double value, final FlowVolumeUnit unit)
{
return new FlowVolume(value, unit);
}
/**
* Construct FlowVolume scalar.
* @param value double; double value in SI units
* @return the new scalar with the SI value
*/
public static final FlowVolume createSI(final double value)
{
return new FlowVolume(value, FlowVolumeUnit.SI);
}
/**
* Interpolate between two values.
* @param zero FlowVolume; the low value
* @param one FlowVolume; the high value
* @param ratio double; the ratio between 0 and 1, inclusive
* @return a Scalar at the ratio between
*/
public static FlowVolume interpolate(final FlowVolume zero, final FlowVolume one, final double ratio)
{
return new FlowVolume(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getUnit()) * ratio, zero.getUnit());
}
/**
* Return the maximum value of two relative scalars.
* @param r1 FlowVolume; the first scalar
* @param r2 FlowVolume; the second scalar
* @return the maximum value of two relative scalars
*/
public static FlowVolume max(final FlowVolume r1, final FlowVolume r2)
{
return (r1.gt(r2)) ? r1 : r2;
}
/**
* Return the maximum value of more than two relative scalars.
* @param r1 FlowVolume; the first scalar
* @param r2 FlowVolume; the second scalar
* @param rn FlowVolume...; the other scalars
* @return the maximum value of more than two relative scalars
*/
public static FlowVolume max(final FlowVolume r1, final FlowVolume r2, final FlowVolume... rn)
{
FlowVolume maxr = (r1.gt(r2)) ? r1 : r2;
for (FlowVolume r : rn)
{
if (r.gt(maxr))
{
maxr = r;
}
}
return maxr;
}
/**
* Return the minimum value of two relative scalars.
* @param r1 FlowVolume; the first scalar
* @param r2 FlowVolume; the second scalar
* @return the minimum value of two relative scalars
*/
public static FlowVolume min(final FlowVolume r1, final FlowVolume r2)
{
return (r1.lt(r2)) ? r1 : r2;
}
/**
* Return the minimum value of more than two relative scalars.
* @param r1 FlowVolume; the first scalar
* @param r2 FlowVolume; the second scalar
* @param rn FlowVolume...; the other scalars
* @return the minimum value of more than two relative scalars
*/
public static FlowVolume min(final FlowVolume r1, final FlowVolume r2, final FlowVolume... rn)
{
FlowVolume minr = (r1.lt(r2)) ? r1 : r2;
for (FlowVolume r : rn)
{
if (r.lt(minr))
{
minr = r;
}
}
return minr;
}
/**
* Calculate the division of FlowVolume and FlowVolume, which results in a Dimensionless scalar.
* @param v FlowVolume; FlowVolume scalar
* @return Dimensionless scalar as a division of FlowVolume and FlowVolume
*/
public final Dimensionless divideBy(final FlowVolume v)
{
return new Dimensionless(this.si / v.si, DimensionlessUnit.SI);
}
/**
* Calculate the multiplication of FlowVolume and Duration, which results in a Volume scalar.
* @param v Duration; FlowVolume scalar
* @return Volume scalar as a multiplication of FlowVolume and Duration
*/
public final Volume multiplyBy(final Duration v)
{
return new Volume(this.si * v.si, VolumeUnit.SI);
}
/**
* Calculate the division of FlowVolume and Frequency, which results in a Volume scalar.
* @param v Frequency; FlowVolume scalar
* @return Volume scalar as a division of FlowVolume and Frequency
*/
public final Volume divideBy(final Frequency v)
{
return new Volume(this.si / v.si, VolumeUnit.SI);
}
/**
* Calculate the division of FlowVolume and Volume, which results in a Frequency scalar.
* @param v Volume; FlowVolume scalar
* @return Frequency scalar as a division of FlowVolume and Volume
*/
public final Frequency divideBy(final Volume v)
{
return new Frequency(this.si / v.si, FrequencyUnit.SI);
}
/**
* Calculate the division of FlowVolume and Area, which results in a Speed scalar.
* @param v Area; FlowVolume scalar
* @return Speed scalar as a division of FlowVolume and Area
*/
public final Speed divideBy(final Area v)
{
return new Speed(this.si / v.si, SpeedUnit.SI);
}
/**
* Calculate the division of FlowVolume and Speed, which results in a Area scalar.
* @param v Speed; FlowVolume scalar
* @return Area scalar as a division of FlowVolume and Speed
*/
public final Area divideBy(final Speed v)
{
return new Area(this.si / v.si, AreaUnit.SI);
}
}