FlowMass.java
package org.djunits.value.vdouble.scalar;
import org.djunits.unit.DimensionlessUnit;
import org.djunits.unit.FlowMassUnit;
import org.djunits.unit.ForceUnit;
import org.djunits.unit.FrequencyUnit;
import org.djunits.unit.MassUnit;
/**
* Easy access methods for the FlowMass DoubleScalar, which is relative by definition. Instead of:
*
* <pre>
* DoubleScalar.Rel<FlowMassUnit> value = new DoubleScalar.Rel<FlowMassUnit>(100.0, FlowMassUnit.SI);
* </pre>
*
* we can now write:
*
* <pre>
* FlowMass value = new FlowMass(100.0, FlowMassUnit.SI);
* </pre>
*
* The compiler will automatically recognize which units belong to which quantity, and whether the quantity type and the unit
* used are compatible.
* <p>
* Copyright (c) 2013-2019 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
* BSD-style license. See <a href="http://djunits.org/docs/license.html">DJUNITS License</a>.
* <p>
* $LastChangedDate: 2019-01-18 00:35:01 +0100 (Fri, 18 Jan 2019) $, @version $Revision: 324 $, by $Author: averbraeck $,
* initial version Sep 5, 2015 <br>
* @author <a href="http://www.tbm.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="http://www.tudelft.nl/pknoppers">Peter Knoppers</a>
*/
public class FlowMass extends AbstractDoubleScalarRel<FlowMassUnit, FlowMass>
{
/** */
private static final long serialVersionUID = 20150905L;
/** constant with value zero. */
public static final FlowMass ZERO = new FlowMass(0.0, FlowMassUnit.SI);
/** constant with value NaN. */
@SuppressWarnings("checkstyle:constantname")
public static final FlowMass NaN = new FlowMass(Double.NaN, FlowMassUnit.SI);
/** constant with value POSITIVE_INFINITY. */
public static final FlowMass POSITIVE_INFINITY = new FlowMass(Double.POSITIVE_INFINITY, FlowMassUnit.SI);
/** constant with value NEGATIVE_INFINITY. */
public static final FlowMass NEGATIVE_INFINITY = new FlowMass(Double.NEGATIVE_INFINITY, FlowMassUnit.SI);
/** constant with value MAX_VALUE. */
public static final FlowMass POS_MAXVALUE = new FlowMass(Double.MAX_VALUE, FlowMassUnit.SI);
/** constant with value -MAX_VALUE. */
public static final FlowMass NEG_MAXVALUE = new FlowMass(-Double.MAX_VALUE, FlowMassUnit.SI);
/**
* Construct FlowMass scalar.
* @param value double; double value
* @param unit FlowMassUnit; unit for the double value
*/
public FlowMass(final double value, final FlowMassUnit unit)
{
super(value, unit);
}
/**
* Construct FlowMass scalar.
* @param value FlowMass; Scalar from which to construct this instance
*/
public FlowMass(final FlowMass value)
{
super(value);
}
/** {@inheritDoc} */
@Override
public final FlowMass instantiateRel(final double value, final FlowMassUnit unit)
{
return new FlowMass(value, unit);
}
/**
* Construct FlowMass scalar.
* @param value double; double value in SI units
* @return the new scalar with the SI value
*/
public static final FlowMass createSI(final double value)
{
return new FlowMass(value, FlowMassUnit.SI);
}
/**
* Interpolate between two values.
* @param zero FlowMass; the low value
* @param one FlowMass; the high value
* @param ratio double; the ratio between 0 and 1, inclusive
* @return a Scalar at the ratio between
*/
public static FlowMass interpolate(final FlowMass zero, final FlowMass one, final double ratio)
{
return new FlowMass(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getUnit()) * ratio, zero.getUnit());
}
/**
* Return the maximum value of two relative scalars.
* @param r1 FlowMass; the first scalar
* @param r2 FlowMass; the second scalar
* @return the maximum value of two relative scalars
*/
public static FlowMass max(final FlowMass r1, final FlowMass r2)
{
return (r1.gt(r2)) ? r1 : r2;
}
/**
* Return the maximum value of more than two relative scalars.
* @param r1 FlowMass; the first scalar
* @param r2 FlowMass; the second scalar
* @param rn FlowMass...; the other scalars
* @return the maximum value of more than two relative scalars
*/
public static FlowMass max(final FlowMass r1, final FlowMass r2, final FlowMass... rn)
{
FlowMass maxr = (r1.gt(r2)) ? r1 : r2;
for (FlowMass r : rn)
{
if (r.gt(maxr))
{
maxr = r;
}
}
return maxr;
}
/**
* Return the minimum value of two relative scalars.
* @param r1 FlowMass; the first scalar
* @param r2 FlowMass; the second scalar
* @return the minimum value of two relative scalars
*/
public static FlowMass min(final FlowMass r1, final FlowMass r2)
{
return (r1.lt(r2)) ? r1 : r2;
}
/**
* Return the minimum value of more than two relative scalars.
* @param r1 FlowMass; the first scalar
* @param r2 FlowMass; the second scalar
* @param rn FlowMass...; the other scalars
* @return the minimum value of more than two relative scalars
*/
public static FlowMass min(final FlowMass r1, final FlowMass r2, final FlowMass... rn)
{
FlowMass minr = (r1.lt(r2)) ? r1 : r2;
for (FlowMass r : rn)
{
if (r.lt(minr))
{
minr = r;
}
}
return minr;
}
/**
* Calculate the division of FlowMass and FlowMass, which results in a Dimensionless scalar.
* @param v FlowMass; FlowMass scalar
* @return Dimensionless scalar as a division of FlowMass and FlowMass
*/
public final Dimensionless divideBy(final FlowMass v)
{
return new Dimensionless(this.si / v.si, DimensionlessUnit.SI);
}
/**
* Calculate the multiplication of FlowMass and Duration, which results in a Mass scalar.
* @param v Duration; FlowMass scalar
* @return Mass scalar as a multiplication of FlowMass and Duration
*/
public final Mass multiplyBy(final Duration v)
{
return new Mass(this.si * v.si, MassUnit.SI);
}
/**
* Calculate the division of FlowMass and Frequency, which results in a Mass scalar.
* @param v Frequency; FlowMass scalar
* @return Mass scalar as a division of FlowMass and Frequency
*/
public final Mass divideBy(final Frequency v)
{
return new Mass(this.si / v.si, MassUnit.SI);
}
/**
* Calculate the division of FlowMass and Mass, which results in a Frequency scalar.
* @param v Mass; FlowMass scalar
* @return Frequency scalar as a division of FlowMass and Mass
*/
public final Frequency divideBy(final Mass v)
{
return new Frequency(this.si / v.si, FrequencyUnit.SI);
}
/**
* Calculate the multiplication of FlowMass and Speed, which results in a Force scalar.
* @param v Speed; FlowMass scalar
* @return Force scalar as a multiplication of FlowMass and Speed
*/
public final Force multiplyBy(final Speed v)
{
return new Force(this.si * v.si, ForceUnit.SI);
}
}