Energy.java
package org.djunits.value.vdouble.scalar;
import org.djunits.unit.DimensionlessUnit;
import org.djunits.unit.DurationUnit;
import org.djunits.unit.EnergyUnit;
import org.djunits.unit.ForceUnit;
import org.djunits.unit.LengthUnit;
import org.djunits.unit.MoneyUnit;
import org.djunits.unit.PowerUnit;
import org.djunits.unit.PressureUnit;
/**
* Easy access methods for the Energy DoubleScalar, which is relative by definition. Instead of:
*
* <pre>
* DoubleScalar.Rel<EnergyUnit> value = new DoubleScalar.Rel<EnergyUnit>(100.0, EnergyUnit.SI);
* </pre>
*
* we can now write:
*
* <pre>
* Energy value = new Energy(100.0, EnergyUnit.SI);
* </pre>
*
* The compiler will automatically recognize which units belong to which quantity, and whether the quantity type and the unit
* used are compatible.
* <p>
* Copyright (c) 2013-2019 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
* BSD-style license. See <a href="http://djunits.org/docs/license.html">DJUNITS License</a>.
* <p>
* $LastChangedDate: 2019-01-18 00:35:01 +0100 (Fri, 18 Jan 2019) $, @version $Revision: 324 $, by $Author: averbraeck $,
* initial version Sep 5, 2015 <br>
* @author <a href="http://www.tbm.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="http://www.tudelft.nl/pknoppers">Peter Knoppers</a>
*/
public class Energy extends AbstractDoubleScalarRel<EnergyUnit, Energy>
{
/** */
private static final long serialVersionUID = 20150905L;
/** constant with value zero. */
public static final Energy ZERO = new Energy(0.0, EnergyUnit.SI);
/** constant with value NaN. */
@SuppressWarnings("checkstyle:constantname")
public static final Energy NaN = new Energy(Double.NaN, EnergyUnit.SI);
/** constant with value POSITIVE_INFINITY. */
public static final Energy POSITIVE_INFINITY = new Energy(Double.POSITIVE_INFINITY, EnergyUnit.SI);
/** constant with value NEGATIVE_INFINITY. */
public static final Energy NEGATIVE_INFINITY = new Energy(Double.NEGATIVE_INFINITY, EnergyUnit.SI);
/** constant with value MAX_VALUE. */
public static final Energy POS_MAXVALUE = new Energy(Double.MAX_VALUE, EnergyUnit.SI);
/** constant with value -MAX_VALUE. */
public static final Energy NEG_MAXVALUE = new Energy(-Double.MAX_VALUE, EnergyUnit.SI);
/**
* Construct Energy scalar.
* @param value double; double value
* @param unit EnergyUnit; unit for the double value
*/
public Energy(final double value, final EnergyUnit unit)
{
super(value, unit);
}
/**
* Construct Energy scalar.
* @param value Energy; Scalar from which to construct this instance
*/
public Energy(final Energy value)
{
super(value);
}
/** {@inheritDoc} */
@Override
public final Energy instantiateRel(final double value, final EnergyUnit unit)
{
return new Energy(value, unit);
}
/**
* Construct Energy scalar.
* @param value double; double value in SI units
* @return the new scalar with the SI value
*/
public static final Energy createSI(final double value)
{
return new Energy(value, EnergyUnit.SI);
}
/**
* Interpolate between two values.
* @param zero Energy; the low value
* @param one Energy; the high value
* @param ratio double; the ratio between 0 and 1, inclusive
* @return a Scalar at the ratio between
*/
public static Energy interpolate(final Energy zero, final Energy one, final double ratio)
{
return new Energy(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getUnit()) * ratio, zero.getUnit());
}
/**
* Return the maximum value of two relative scalars.
* @param r1 Energy; the first scalar
* @param r2 Energy; the second scalar
* @return the maximum value of two relative scalars
*/
public static Energy max(final Energy r1, final Energy r2)
{
return (r1.gt(r2)) ? r1 : r2;
}
/**
* Return the maximum value of more than two relative scalars.
* @param r1 Energy; the first scalar
* @param r2 Energy; the second scalar
* @param rn Energy...; the other scalars
* @return the maximum value of more than two relative scalars
*/
public static Energy max(final Energy r1, final Energy r2, final Energy... rn)
{
Energy maxr = (r1.gt(r2)) ? r1 : r2;
for (Energy r : rn)
{
if (r.gt(maxr))
{
maxr = r;
}
}
return maxr;
}
/**
* Return the minimum value of two relative scalars.
* @param r1 Energy; the first scalar
* @param r2 Energy; the second scalar
* @return the minimum value of two relative scalars
*/
public static Energy min(final Energy r1, final Energy r2)
{
return (r1.lt(r2)) ? r1 : r2;
}
/**
* Return the minimum value of more than two relative scalars.
* @param r1 Energy; the first scalar
* @param r2 Energy; the second scalar
* @param rn Energy...; the other scalars
* @return the minimum value of more than two relative scalars
*/
public static Energy min(final Energy r1, final Energy r2, final Energy... rn)
{
Energy minr = (r1.lt(r2)) ? r1 : r2;
for (Energy r : rn)
{
if (r.lt(minr))
{
minr = r;
}
}
return minr;
}
/**
* Calculate the division of Energy and Energy, which results in a Dimensionless scalar.
* @param v Energy; Energy scalar
* @return Dimensionless scalar as a division of Energy and Energy
*/
public final Dimensionless divideBy(final Energy v)
{
return new Dimensionless(this.si / v.si, DimensionlessUnit.SI);
}
/**
* Calculate the division of Energy and Force, which results in a Length scalar.
* @param v Force; Energy scalar
* @return Length scalar as a division of Energy and Force
*/
public final Length divideBy(final Force v)
{
return new Length(this.si / v.si, LengthUnit.SI);
}
/**
* Calculate the division of Energy and Length, which results in a Force scalar.
* @param v Length; Energy scalar
* @return Force scalar as a division of Energy and Length
*/
public final Force divideBy(final Length v)
{
return new Force(this.si / v.si, ForceUnit.SI);
}
/**
* Calculate the multiplication of Energy and LinearDensity, which results in a Force scalar.
* @param v LinearDensity; Energy scalar
* @return Force scalar as a multiplication of Energy and LinearDensity
*/
public final Force multiplyBy(final LinearDensity v)
{
return new Force(this.si * v.si, ForceUnit.SI);
}
/**
* Calculate the division of Energy and Duration, which results in a Power scalar.
* @param v Duration; Energy scalar
* @return Power scalar as a division of Energy and Duration
*/
public final Power divideBy(final Duration v)
{
return new Power(this.si / v.si, PowerUnit.SI);
}
/**
* Calculate the division of Energy and Power, which results in a Duration scalar.
* @param v Power; Energy scalar
* @return Duration scalar as a division of Energy and Power
*/
public final Duration divideBy(final Power v)
{
return new Duration(this.si / v.si, DurationUnit.SI);
}
/**
* Calculate the division of Energy and Volume, which results in a Pressure scalar.
* @param v Volume; Energy scalar
* @return Pressure scalar as a division of Energy and Volume
*/
public final Pressure divideBy(final Volume v)
{
return new Pressure(this.si / v.si, PressureUnit.SI);
}
/**
* Calculate the multiplication of Energy and Frequency, which results in a Power scalar.
* @param v Frequency; Energy scalar
* @return Power scalar as a multiplication of Energy and Frequency
*/
public final Power multiplyBy(final Frequency v)
{
return new Power(this.si * v.si, PowerUnit.SI);
}
/**
* Calculate the multiplication of Energy and MoneyPerEnergy, which results in a Money scalar.
* @param v MoneyPerEnergy; Energy scalar
* @return Money scalar as a multiplication of Energy and MoneyPerEnergy
*/
public final Money multiplyBy(final MoneyPerEnergy v)
{
return new Money(this.si * v.si, MoneyUnit.getStandardMoneyUnit());
}
}