ElectricalPotential.java
package org.djunits.value.vdouble.scalar;
import org.djunits.unit.DimensionlessUnit;
import org.djunits.unit.ElectricalCurrentUnit;
import org.djunits.unit.ElectricalPotentialUnit;
import org.djunits.unit.ElectricalResistanceUnit;
import org.djunits.unit.PowerUnit;
/**
* Easy access methods for the ElectricalPotential DoubleScalar, which is relative by definition. Instead of:
*
* <pre>
* DoubleScalar.Rel<ElectricalPotentialUnit> value =
* new DoubleScalar.Rel<ElectricalPotentialUnit>(100.0, ElectricalPotentialUnit.SI);
* </pre>
*
* we can now write:
*
* <pre>
* ElectricalPotential value = new ElectricalPotential(100.0, ElectricalPotentialUnit.SI);
* </pre>
*
* The compiler will automatically recognize which units belong to which quantity, and whether the quantity type and the unit
* used are compatible.
* <p>
* Copyright (c) 2013-2019 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
* BSD-style license. See <a href="http://djunits.org/docs/license.html">DJUNITS License</a>.
* <p>
* $LastChangedDate: 2019-01-18 00:35:01 +0100 (Fri, 18 Jan 2019) $, @version $Revision: 324 $, by $Author: averbraeck $,
* initial version Sep 5, 2015 <br>
* @author <a href="http://www.tbm.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="http://www.tudelft.nl/pknoppers">Peter Knoppers</a>
*/
public class ElectricalPotential extends AbstractDoubleScalarRel<ElectricalPotentialUnit, ElectricalPotential>
{
/** */
private static final long serialVersionUID = 20150905L;
/** constant with value zero. */
public static final ElectricalPotential ZERO = new ElectricalPotential(0.0, ElectricalPotentialUnit.SI);
/** constant with value NaN. */
@SuppressWarnings("checkstyle:constantname")
public static final ElectricalPotential NaN = new ElectricalPotential(Double.NaN, ElectricalPotentialUnit.SI);
/** constant with value POSITIVE_INFINITY. */
public static final ElectricalPotential POSITIVE_INFINITY =
new ElectricalPotential(Double.POSITIVE_INFINITY, ElectricalPotentialUnit.SI);
/** constant with value NEGATIVE_INFINITY. */
public static final ElectricalPotential NEGATIVE_INFINITY =
new ElectricalPotential(Double.NEGATIVE_INFINITY, ElectricalPotentialUnit.SI);
/** constant with value MAX_VALUE. */
public static final ElectricalPotential POS_MAXVALUE =
new ElectricalPotential(Double.MAX_VALUE, ElectricalPotentialUnit.SI);
/** constant with value -MAX_VALUE. */
public static final ElectricalPotential NEG_MAXVALUE =
new ElectricalPotential(-Double.MAX_VALUE, ElectricalPotentialUnit.SI);
/**
* Construct ElectricalPotential scalar.
* @param value double; double value
* @param unit ElectricalPotentialUnit; unit for the double value
*/
public ElectricalPotential(final double value, final ElectricalPotentialUnit unit)
{
super(value, unit);
}
/**
* Construct ElectricalPotential scalar.
* @param value ElectricalPotential; Scalar from which to construct this instance
*/
public ElectricalPotential(final ElectricalPotential value)
{
super(value);
}
/** {@inheritDoc} */
@Override
public final ElectricalPotential instantiateRel(final double value, final ElectricalPotentialUnit unit)
{
return new ElectricalPotential(value, unit);
}
/**
* Construct ElectricalPotential scalar.
* @param value double; double value in SI units
* @return the new scalar with the SI value
*/
public static final ElectricalPotential createSI(final double value)
{
return new ElectricalPotential(value, ElectricalPotentialUnit.SI);
}
/**
* Interpolate between two values.
* @param zero ElectricalPotential; the low value
* @param one ElectricalPotential; the high value
* @param ratio double; the ratio between 0 and 1, inclusive
* @return a Scalar at the ratio between
*/
public static ElectricalPotential interpolate(final ElectricalPotential zero, final ElectricalPotential one,
final double ratio)
{
return new ElectricalPotential(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getUnit()) * ratio, zero.getUnit());
}
/**
* Return the maximum value of two relative scalars.
* @param r1 ElectricalPotential; the first scalar
* @param r2 ElectricalPotential; the second scalar
* @return the maximum value of two relative scalars
*/
public static ElectricalPotential max(final ElectricalPotential r1, final ElectricalPotential r2)
{
return (r1.gt(r2)) ? r1 : r2;
}
/**
* Return the maximum value of more than two relative scalars.
* @param r1 ElectricalPotential; the first scalar
* @param r2 ElectricalPotential; the second scalar
* @param rn ElectricalPotential...; the other scalars
* @return the maximum value of more than two relative scalars
*/
public static ElectricalPotential max(final ElectricalPotential r1, final ElectricalPotential r2,
final ElectricalPotential... rn)
{
ElectricalPotential maxr = (r1.gt(r2)) ? r1 : r2;
for (ElectricalPotential r : rn)
{
if (r.gt(maxr))
{
maxr = r;
}
}
return maxr;
}
/**
* Return the minimum value of two relative scalars.
* @param r1 ElectricalPotential; the first scalar
* @param r2 ElectricalPotential; the second scalar
* @return the minimum value of two relative scalars
*/
public static ElectricalPotential min(final ElectricalPotential r1, final ElectricalPotential r2)
{
return (r1.lt(r2)) ? r1 : r2;
}
/**
* Return the minimum value of more than two relative scalars.
* @param r1 ElectricalPotential; the first scalar
* @param r2 ElectricalPotential; the second scalar
* @param rn ElectricalPotential...; the other scalars
* @return the minimum value of more than two relative scalars
*/
public static ElectricalPotential min(final ElectricalPotential r1, final ElectricalPotential r2,
final ElectricalPotential... rn)
{
ElectricalPotential minr = (r1.lt(r2)) ? r1 : r2;
for (ElectricalPotential r : rn)
{
if (r.lt(minr))
{
minr = r;
}
}
return minr;
}
/**
* Calculate the division of ElectricalPotential and ElectricalPotential, which results in a Dimensionless scalar.
* @param v ElectricalPotential; ElectricalPotential scalar
* @return Dimensionless scalar as a division of ElectricalPotential and ElectricalPotential
*/
public final Dimensionless divideBy(final ElectricalPotential v)
{
return new Dimensionless(this.si / v.si, DimensionlessUnit.SI);
}
/**
* Calculate the multiplication of ElectricalPotential and ElectricalCurrent, which results in a Power scalar.
* @param v ElectricalCurrent; ElectricalPotential scalar
* @return Power scalar as a multiplication of ElectricalPotential and ElectricalCurrent
*/
public final Power multiplyBy(final ElectricalCurrent v)
{
return new Power(this.si * v.si, PowerUnit.SI);
}
/**
* Calculate the division of ElectricalPotential and ElectricalCurrent, which results in a ElectricalResistance scalar.
* @param v ElectricalCurrent; ElectricalPotential scalar
* @return ElectricalResistance scalar as a division of ElectricalPotential and ElectricalCurrent
*/
public final ElectricalResistance divideBy(final ElectricalCurrent v)
{
return new ElectricalResistance(this.si / v.si, ElectricalResistanceUnit.SI);
}
/**
* Calculate the division of ElectricalPotential and ElectricalResistance, which results in a ElectricalCurrent scalar.
* @param v ElectricalResistance; ElectricalPotential scalar
* @return ElectricalCurrent scalar as a division of ElectricalPotential and ElectricalResistance
*/
public final ElectricalCurrent divideBy(final ElectricalResistance v)
{
return new ElectricalCurrent(this.si / v.si, ElectricalCurrentUnit.SI);
}
}