ElectricalCharge.java

package org.djunits.value.vdouble.scalar;

import org.djunits.unit.DimensionlessUnit;
import org.djunits.unit.DurationUnit;
import org.djunits.unit.ElectricalChargeUnit;
import org.djunits.unit.ElectricalCurrentUnit;

/**
 * Easy access methods for the ElectricalCharge DoubleScalar, which is relative by definition. Instead of:
 * 
 * <pre>
 * DoubleScalar.Rel&lt;ElectricalChargeUnit&gt; value = new DoubleScalar.Rel&lt;ElectricalChargeUnit&gt;(100.0, ElectricalChargeUnit.SI);
 * </pre>
 * 
 * we can now write:
 * 
 * <pre>
 * ElectricalCharge value = new ElectricalCharge(100.0, ElectricalChargeUnit.SI);
 * </pre>
 * 
 * The compiler will automatically recognize which units belong to which quantity, and whether the quantity type and the unit
 * used are compatible.
 * <p>
 * Copyright (c) 2013-2019 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
 * BSD-style license. See <a href="http://djunits.org/docs/license.html">DJUNITS License</a>.
 * <p>
 * $LastChangedDate: 2019-01-18 00:35:01 +0100 (Fri, 18 Jan 2019) $, @version $Revision: 324 $, by $Author: averbraeck $,
 * initial version Sep 5, 2015 <br>
 * @author <a href="http://www.tbm.tudelft.nl/averbraeck">Alexander Verbraeck</a>
 * @author <a href="http://www.tudelft.nl/pknoppers">Peter Knoppers</a>
 */
public class ElectricalCharge extends AbstractDoubleScalarRel<ElectricalChargeUnit, ElectricalCharge>
{
    /** */
    private static final long serialVersionUID = 20150905L;

    /** constant with value zero. */
    public static final ElectricalCharge ZERO = new ElectricalCharge(0.0, ElectricalChargeUnit.SI);

    /** constant with value NaN. */
    @SuppressWarnings("checkstyle:constantname")
    public static final ElectricalCharge NaN = new ElectricalCharge(Double.NaN, ElectricalChargeUnit.SI);

    /** constant with value POSITIVE_INFINITY. */
    public static final ElectricalCharge POSITIVE_INFINITY =
            new ElectricalCharge(Double.POSITIVE_INFINITY, ElectricalChargeUnit.SI);

    /** constant with value NEGATIVE_INFINITY. */
    public static final ElectricalCharge NEGATIVE_INFINITY =
            new ElectricalCharge(Double.NEGATIVE_INFINITY, ElectricalChargeUnit.SI);

    /** constant with value MAX_VALUE. */
    public static final ElectricalCharge POS_MAXVALUE = new ElectricalCharge(Double.MAX_VALUE, ElectricalChargeUnit.SI);

    /** constant with value -MAX_VALUE. */
    public static final ElectricalCharge NEG_MAXVALUE = new ElectricalCharge(-Double.MAX_VALUE, ElectricalChargeUnit.SI);

    /**
     * Construct ElectricalCharge scalar.
     * @param value double; double value
     * @param unit ElectricalChargeUnit; unit for the double value
     */
    public ElectricalCharge(final double value, final ElectricalChargeUnit unit)
    {
        super(value, unit);
    }

    /**
     * Construct ElectricalCharge scalar.
     * @param value ElectricalCharge; Scalar from which to construct this instance
     */
    public ElectricalCharge(final ElectricalCharge value)
    {
        super(value);
    }

    /** {@inheritDoc} */
    @Override
    public final ElectricalCharge instantiateRel(final double value, final ElectricalChargeUnit unit)
    {
        return new ElectricalCharge(value, unit);
    }

    /**
     * Construct ElectricalCharge scalar.
     * @param value double; double value in SI units
     * @return the new scalar with the SI value
     */
    public static final ElectricalCharge createSI(final double value)
    {
        return new ElectricalCharge(value, ElectricalChargeUnit.SI);
    }

    /**
     * Interpolate between two values.
     * @param zero ElectricalCharge; the low value
     * @param one ElectricalCharge; the high value
     * @param ratio double; the ratio between 0 and 1, inclusive
     * @return a Scalar at the ratio between
     */
    public static ElectricalCharge interpolate(final ElectricalCharge zero, final ElectricalCharge one, final double ratio)
    {
        return new ElectricalCharge(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getUnit()) * ratio, zero.getUnit());
    }

    /**
     * Return the maximum value of two relative scalars.
     * @param r1 ElectricalCharge; the first scalar
     * @param r2 ElectricalCharge; the second scalar
     * @return the maximum value of two relative scalars
     */
    public static ElectricalCharge max(final ElectricalCharge r1, final ElectricalCharge r2)
    {
        return (r1.gt(r2)) ? r1 : r2;
    }

    /**
     * Return the maximum value of more than two relative scalars.
     * @param r1 ElectricalCharge; the first scalar
     * @param r2 ElectricalCharge; the second scalar
     * @param rn ElectricalCharge...; the other scalars
     * @return the maximum value of more than two relative scalars
     */
    public static ElectricalCharge max(final ElectricalCharge r1, final ElectricalCharge r2, final ElectricalCharge... rn)
    {
        ElectricalCharge maxr = (r1.gt(r2)) ? r1 : r2;
        for (ElectricalCharge r : rn)
        {
            if (r.gt(maxr))
            {
                maxr = r;
            }
        }
        return maxr;
    }

    /**
     * Return the minimum value of two relative scalars.
     * @param r1 ElectricalCharge; the first scalar
     * @param r2 ElectricalCharge; the second scalar
     * @return the minimum value of two relative scalars
     */
    public static ElectricalCharge min(final ElectricalCharge r1, final ElectricalCharge r2)
    {
        return (r1.lt(r2)) ? r1 : r2;
    }

    /**
     * Return the minimum value of more than two relative scalars.
     * @param r1 ElectricalCharge; the first scalar
     * @param r2 ElectricalCharge; the second scalar
     * @param rn ElectricalCharge...; the other scalars
     * @return the minimum value of more than two relative scalars
     */
    public static ElectricalCharge min(final ElectricalCharge r1, final ElectricalCharge r2, final ElectricalCharge... rn)
    {
        ElectricalCharge minr = (r1.lt(r2)) ? r1 : r2;
        for (ElectricalCharge r : rn)
        {
            if (r.lt(minr))
            {
                minr = r;
            }
        }
        return minr;
    }

    /**
     * Calculate the division of ElectricalCharge and ElectricalCharge, which results in a Dimensionless scalar.
     * @param v ElectricalCharge; ElectricalCharge scalar
     * @return Dimensionless scalar as a division of ElectricalCharge and ElectricalCharge
     */
    public final Dimensionless divideBy(final ElectricalCharge v)
    {
        return new Dimensionless(this.si / v.si, DimensionlessUnit.SI);
    }

    /**
     * Calculate the division of ElectricalCharge and Duration, which results in a ElectricalCurrent scalar.
     * @param v Duration; ElectricalCharge scalar
     * @return ElectricalCurrent scalar as a division of ElectricalCharge and Duration
     */
    public final ElectricalCurrent divideBy(final Duration v)
    {
        return new ElectricalCurrent(this.si / v.si, ElectricalCurrentUnit.SI);
    }

    /**
     * Calculate the division of ElectricalCharge and ElectricalCurrent, which results in a Duration scalar.
     * @param v ElectricalCurrent; ElectricalCharge scalar
     * @return Duration scalar as a division of ElectricalCharge and ElectricalCurrent
     */
    public final Duration divideBy(final ElectricalCurrent v)
    {
        return new Duration(this.si / v.si, DurationUnit.SI);
    }

}