Area.java
package org.djunits.value.vdouble.scalar;
import org.djunits.unit.AreaUnit;
import org.djunits.unit.DimensionlessUnit;
import org.djunits.unit.FlowVolumeUnit;
import org.djunits.unit.ForceUnit;
import org.djunits.unit.LengthUnit;
import org.djunits.unit.LinearDensityUnit;
import org.djunits.unit.MoneyUnit;
import org.djunits.unit.VolumeUnit;
/**
* Easy access methods for the Area DoubleScalar, which is relative by definition. Instead of:
*
* <pre>
* DoubleScalar.Rel<AreaUnit> value = new DoubleScalar.Rel<AreaUnit>(100.0, AreaUnit.SI);
* </pre>
*
* we can now write:
*
* <pre>
* Area value = new Area(100.0, AreaUnit.SI);
* </pre>
*
* The compiler will automatically recognize which units belong to which quantity, and whether the quantity type and the unit
* used are compatible.
* <p>
* Copyright (c) 2013-2019 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
* BSD-style license. See <a href="http://djunits.org/docs/license.html">DJUNITS License</a>.
* <p>
* $LastChangedDate: 2019-01-18 00:35:01 +0100 (Fri, 18 Jan 2019) $, @version $Revision: 324 $, by $Author: averbraeck $,
* initial version Sep 5, 2015 <br>
* @author <a href="http://www.tbm.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="http://www.tudelft.nl/pknoppers">Peter Knoppers</a>
*/
public class Area extends AbstractDoubleScalarRel<AreaUnit, Area>
{
/** */
private static final long serialVersionUID = 20150905L;
/** constant with value zero. */
public static final Area ZERO = new Area(0.0, AreaUnit.SI);
/** constant with value NaN. */
@SuppressWarnings("checkstyle:constantname")
public static final Area NaN = new Area(Double.NaN, AreaUnit.SI);
/** constant with value POSITIVE_INFINITY. */
public static final Area POSITIVE_INFINITY = new Area(Double.POSITIVE_INFINITY, AreaUnit.SI);
/** constant with value NEGATIVE_INFINITY. */
public static final Area NEGATIVE_INFINITY = new Area(Double.NEGATIVE_INFINITY, AreaUnit.SI);
/** constant with value MAX_VALUE. */
public static final Area POS_MAXVALUE = new Area(Double.MAX_VALUE, AreaUnit.SI);
/** constant with value -MAX_VALUE. */
public static final Area NEG_MAXVALUE = new Area(-Double.MAX_VALUE, AreaUnit.SI);
/**
* Construct Area scalar.
* @param value double; double value
* @param unit AreaUnit; unit for the double value
*/
public Area(final double value, final AreaUnit unit)
{
super(value, unit);
}
/**
* Construct Area scalar.
* @param value Area; Scalar from which to construct this instance
*/
public Area(final Area value)
{
super(value);
}
/** {@inheritDoc} */
@Override
public final Area instantiateRel(final double value, final AreaUnit unit)
{
return new Area(value, unit);
}
/**
* Construct Area scalar.
* @param value double; double value in SI units
* @return the new scalar with the SI value
*/
public static final Area createSI(final double value)
{
return new Area(value, AreaUnit.SI);
}
/**
* Interpolate between two values.
* @param zero Area; the low value
* @param one Area; the high value
* @param ratio double; the ratio between 0 and 1, inclusive
* @return a Scalar at the ratio between
*/
public static Area interpolate(final Area zero, final Area one, final double ratio)
{
return new Area(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getUnit()) * ratio, zero.getUnit());
}
/**
* Return the maximum value of two relative scalars.
* @param r1 Area; the first scalar
* @param r2 Area; the second scalar
* @return the maximum value of two relative scalars
*/
public static Area max(final Area r1, final Area r2)
{
return (r1.gt(r2)) ? r1 : r2;
}
/**
* Return the maximum value of more than two relative scalars.
* @param r1 Area; the first scalar
* @param r2 Area; the second scalar
* @param rn Area...; the other scalars
* @return the maximum value of more than two relative scalars
*/
public static Area max(final Area r1, final Area r2, final Area... rn)
{
Area maxr = (r1.gt(r2)) ? r1 : r2;
for (Area r : rn)
{
if (r.gt(maxr))
{
maxr = r;
}
}
return maxr;
}
/**
* Return the minimum value of two relative scalars.
* @param r1 Area; the first scalar
* @param r2 Area; the second scalar
* @return the minimum value of two relative scalars
*/
public static Area min(final Area r1, final Area r2)
{
return (r1.lt(r2)) ? r1 : r2;
}
/**
* Return the minimum value of more than two relative scalars.
* @param r1 Area; the first scalar
* @param r2 Area; the second scalar
* @param rn Area...; the other scalars
* @return the minimum value of more than two relative scalars
*/
public static Area min(final Area r1, final Area r2, final Area... rn)
{
Area minr = (r1.lt(r2)) ? r1 : r2;
for (Area r : rn)
{
if (r.lt(minr))
{
minr = r;
}
}
return minr;
}
/**
* Calculate the division of Area and Area, which results in a Dimensionless scalar.
* @param v Area; Area scalar
* @return Dimensionless scalar as a division of Area and Area
*/
public final Dimensionless divideBy(final Area v)
{
return new Dimensionless(this.si / v.si, DimensionlessUnit.SI);
}
/**
* Calculate the multiplication of Area and Length, which results in a Volume scalar.
* @param v Length; Area scalar
* @return Volume scalar as a multiplication of Area and Length
*/
public final Volume multiplyBy(final Length v)
{
return new Volume(this.si * v.si, VolumeUnit.SI);
}
/**
* Calculate the division of Area and LinearDensity, which results in a Volume scalar.
* @param v LinearDensity; Area scalar
* @return Volume scalar as a division of Area and LinearDensity
*/
public final Volume divideBy(final LinearDensity v)
{
return new Volume(this.si / v.si, VolumeUnit.SI);
}
/**
* Calculate the division of Area and Volume, which results in a LinearDensity scalar.
* @param v Volume; Area scalar
* @return LinearDensity scalar as a division of Area and Volume
*/
public final LinearDensity divideBy(final Volume v)
{
return new LinearDensity(this.si / v.si, LinearDensityUnit.SI);
}
/**
* Calculate the division of Area and Length, which results in a Length scalar.
* @param v Length; Area scalar
* @return Length scalar as a division of Area and Length
*/
public final Length divideBy(final Length v)
{
return new Length(this.si / v.si, LengthUnit.SI);
}
/**
* Calculate the multiplication of Area and LinearDensity, which results in a Length scalar.
* @param v LinearDensity; Area scalar
* @return Length scalar as a multiplication of Area and LinearDensity
*/
public final Length multiplyBy(final LinearDensity v)
{
return new Length(this.si * v.si, LengthUnit.SI);
}
/**
* Calculate the multiplication of Area and Speed, which results in a FlowVolume scalar.
* @param v Speed; Area scalar
* @return FlowVolume scalar as a multiplication of Area and Speed
*/
public final FlowVolume multiplyBy(final Speed v)
{
return new FlowVolume(this.si * v.si, FlowVolumeUnit.SI);
}
/**
* Calculate the multiplication of Area and Pressure, which results in a Force scalar.
* @param v Pressure; Area scalar
* @return Force scalar as a multiplication of Area and Pressure
*/
public final Force multiplyBy(final Pressure v)
{
return new Force(this.si * v.si, ForceUnit.SI);
}
/**
* Calculate the multiplication of Area and MoneyPerArea, which results in a Money scalar.
* @param v MoneyPerArea; Area scalar
* @return Money scalar as a multiplication of Area and MoneyPerArea
*/
public final Money multiplyBy(final MoneyPerArea v)
{
return new Money(this.si * v.si, MoneyUnit.getStandardMoneyUnit());
}
}