FloatVectorDataSparse.java
package org.djunits.value.vfloat.vector;
import java.util.Arrays;
import java.util.stream.IntStream;
import org.djunits.value.StorageType;
import org.djunits.value.ValueException;
/**
* Stores sparse data for a FloatVector and carries out basic operations.
* <p>
* Copyright (c) 2013-2018 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
* BSD-style license. See <a href="http://opentrafficsim.org/docs/license.html">OpenTrafficSim License</a>.
* </p>
* $LastChangedDate: 2015-07-24 02:58:59 +0200 (Fri, 24 Jul 2015) $, @version $Revision: 1147 $, by $Author: averbraeck $,
* initial version Oct 3, 2015 <br>
* @author <a href="http://www.tbm.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="http://www.tudelft.nl/pknoppers">Peter Knoppers</a>
*/
public class FloatVectorDataSparse extends FloatVectorData
{
/** the index values of the Vector. */
private int[] indices;
/** the length of the vector (padded with 0 after highest index in indices). */
private final int size;
/**
* Create a vector with sparse data.
* @param vectorSI the data to store
* @param indices the index values of the Vector
* @param size the length of the vector (padded with 0 after highest index in indices)
*/
public FloatVectorDataSparse(final float[] vectorSI, final int[] indices, final int size)
{
super(StorageType.SPARSE);
this.vectorSI = vectorSI;
this.indices = indices;
this.size = size;
}
/** {@inheritDoc} */
@Override
public final FloatVectorDataDense toDense()
{
float[] denseSI = new float[this.size];
for (int index = 0; index < this.vectorSI.length; index++)
{
denseSI[this.indices[index]] = this.vectorSI[index];
}
return new FloatVectorDataDense(denseSI);
}
/** {@inheritDoc} */
@Override
public final int size()
{
return this.size;
}
/** {@inheritDoc} */
@Override
public final float getSI(final int index)
{
int internalIndex = Arrays.binarySearch(this.indices, index);
return internalIndex < 0 ? 0.0f : this.vectorSI[internalIndex];
}
/** {@inheritDoc} */
@Override
public final void setSI(final int index, final float valueSI)
{
int internalIndex = Arrays.binarySearch(this.indices, index);
if (internalIndex >= 0)
{
this.vectorSI[internalIndex] = valueSI;
return;
}
// make room. TODO increase size in chunks
internalIndex = -internalIndex - 1;
int[] indicesNew = new int[this.indices.length + 1];
float[] vectorSINew = new float[this.vectorSI.length + 1];
System.arraycopy(this.indices, 0, indicesNew, 0, internalIndex);
System.arraycopy(this.vectorSI, 0, vectorSINew, 0, internalIndex);
// System.out.println("arraycopy1 current size is " + this.indices.length + " srcPos=" + internalIndex +
// ", new size is "
// + indicesNew.length + " dstPos=" + (internalIndex + 1) + " length=" + (this.indices.length - internalIndex));
System.arraycopy(this.indices, internalIndex, indicesNew, internalIndex + 1, this.indices.length - internalIndex);
System.arraycopy(this.vectorSI, internalIndex, vectorSINew, internalIndex + 1, this.indices.length - internalIndex);
indicesNew[internalIndex] = index;
vectorSINew[internalIndex] = valueSI;
this.indices = indicesNew;
this.vectorSI = vectorSINew;
}
/** {@inheritDoc} */
@Override
public final float[] getDenseVectorSI()
{
return toDense().vectorSI;
}
/** {@inheritDoc} */
@Override
public final FloatVectorDataSparse copy()
{
float[] vCopy = new float[this.vectorSI.length];
System.arraycopy(this.vectorSI, 0, vCopy, 0, this.vectorSI.length);
int[] iCopy = new int[this.indices.length];
System.arraycopy(this.indices, 0, iCopy, 0, this.indices.length);
return new FloatVectorDataSparse(vCopy, iCopy, this.size);
}
/**
* Instantiate a FloatVectorDataSparse from an array.
* @param valuesSI the (SI) values to store
* @return the FloatVectorDataSparse
*/
public static FloatVectorDataSparse instantiate(final float[] valuesSI)
{
// determine number of non-null cells
int length = (int) IntStream.range(0, valuesSI.length).parallel().mapToDouble(i -> valuesSI[i]).filter(f -> f != 0.0f)
.count();
float[] sparseSI = new float[length];
int[] indices = new int[length];
// fill the sparse data structures. Cannot be parallelized because of stateful and sequence-sensitive count
int count = 0;
for (int i = 0; i < valuesSI.length; i++)
{
if (valuesSI[i] != 0.0)
{
sparseSI[count] = valuesSI[i];
indices[count] = i;
count++;
}
}
return new FloatVectorDataSparse(sparseSI, indices, valuesSI.length);
}
/** {@inheritDoc} */
@Override
public final void incrementBy(final FloatVectorData right) throws ValueException
{
int newLength =
(int) IntStream.range(0, size()).parallel().filter(i -> this.getSI(i) != 0.0 || right.getSI(i) != 0.0).count();
float[] newVectorSI = new float[newLength];
int[] newIndices = new int[newLength];
// fill the sparse data structures. Cannot be parallelized because of stateful and sequence-sensitive count
// note: if adding -2 and +2, a 0-value will be part of the new sparse matrix.
int count = 0;
for (int i = 0; i < size(); i++)
{
if (this.getSI(i) != 0.0 || right.getSI(i) != 0.0)
{
newVectorSI[count] = getSI(i) + right.getSI(i);
newIndices[count] = i;
count++;
}
}
this.indices = newIndices;
this.vectorSI = newVectorSI;
}
/** {@inheritDoc} */
@Override
public final void decrementBy(final FloatVectorData right) throws ValueException
{
int newLength =
(int) IntStream.range(0, size()).parallel().filter(i -> this.getSI(i) != 0.0 || right.getSI(i) != 0.0).count();
float[] newVectorSI = new float[newLength];
int[] newIndices = new int[newLength];
// fill the sparse data structures. Cannot be parallelized because of stateful and sequence-sensitive count
// note: if subtracting 2 from 2, a 0-value will be part of the new sparse matrix.
int count = 0;
for (int i = 0; i < size(); i++)
{
if (this.getSI(i) != 0.0 || right.getSI(i) != 0.0)
{
newVectorSI[count] = getSI(i) - right.getSI(i);
newIndices[count] = i;
count++;
}
}
this.indices = newIndices;
this.vectorSI = newVectorSI;
}
/** {@inheritDoc} */
@Override
public final void multiplyBy(final FloatVectorData right) throws ValueException
{
int newLength =
(int) IntStream.range(0, size()).parallel().filter(i -> this.getSI(i) != 0.0 && right.getSI(i) != 0.0).count();
float[] newVectorSI = new float[newLength];
int[] newIndices = new int[newLength];
// fill the sparse data structures. Cannot be parallelized because of stateful and sequence-sensitive count
int count = 0;
for (int i = 0; i < size(); i++)
{
if (this.getSI(i) != 0.0 && right.getSI(i) != 0.0)
{
newVectorSI[count] = getSI(i) * right.getSI(i);
newIndices[count] = i;
count++;
}
}
this.indices = newIndices;
this.vectorSI = newVectorSI;
}
/** {@inheritDoc} */
@Override
public final void divideBy(final FloatVectorData right) throws ValueException
{
int newLength =
(int) IntStream.range(0, size()).parallel().filter(i -> this.getSI(i) != 0.0 && right.getSI(i) != 0.0).count();
float[] newVectorSI = new float[newLength];
int[] newIndices = new int[newLength];
// fill the sparse data structures. Cannot be parallelized because of stateful and sequence-sensitive count
int count = 0;
for (int i = 0; i < size(); i++)
{
if (this.getSI(i) != 0.0 && right.getSI(i) != 0.0)
{
newVectorSI[count] = getSI(i) / right.getSI(i);
newIndices[count] = i;
count++;
}
}
this.indices = newIndices;
this.vectorSI = newVectorSI;
}
/** {@inheritDoc} */
@Override
@SuppressWarnings("checkstyle:designforextension")
public int hashCode()
{
final int prime = 31;
int result = super.hashCode();
result = prime * result + Arrays.hashCode(this.indices);
result = prime * result + this.size;
return result;
}
/** {@inheritDoc} */
@SuppressWarnings({ "checkstyle:needbraces", "checkstyle:designforextension" })
@Override
public boolean equals(final Object obj)
{
if (this == obj)
return true;
if (!super.equals(obj))
return false;
if (getClass() != obj.getClass())
return false;
FloatVectorDataSparse other = (FloatVectorDataSparse) obj;
if (!Arrays.equals(this.indices, other.indices))
return false;
if (this.size != other.size)
return false;
return true;
}
}