AbstractMutableFloatVectorRel.java
package org.djunits.value.vfloat.vector;
import java.util.List;
import java.util.SortedMap;
import org.djunits.unit.Unit;
import org.djunits.value.MathFunctionsRel;
import org.djunits.value.StorageType;
import org.djunits.value.ValueException;
import org.djunits.value.ValueUtil;
import org.djunits.value.vfloat.FloatFunction;
import org.djunits.value.vfloat.FloatMathFunctions;
import org.djunits.value.vfloat.scalar.AbstractFloatScalarRel;
/**
* Relative Mutable typed Vector.
* <p>
* Copyright (c) 2013-2018 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
* BSD-style license. See <a href="http://djunits.org/docs/license.html">DJUNITS License</a>.
* <p>
* $LastChangedDate: 2015-09-29 14:14:28 +0200 (Tue, 29 Sep 2015) $, @version $Revision: 73 $, by $Author: pknoppers $, initial
* version Sep 5, 2015 <br>
* @author <a href="http://www.tbm.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="http://www.tudelft.nl/pknoppers">Peter Knoppers</a>
* @param <U> the unit
* @param <R> the vector type
* @param <MR> the mutable vector type
* @param <S> the scalar type
*/
abstract class AbstractMutableFloatVectorRel<U extends Unit<U>, R extends AbstractFloatVectorRel<U, R, MR, S>,
MR extends AbstractMutableFloatVectorRel<U, R, MR, S>, S extends AbstractFloatScalarRel<U, S>>
extends AbstractFloatVectorRel<U, R, MR, S>
implements MathFunctionsRel<MR>, FloatMathFunctions<MR>, MutableFloatVectorInterface<U>
{
/** */
private static final long serialVersionUID = 20151006L;
/** If set, any modification of the data must be preceded by replacing the data with a local copy. */
private boolean copyOnWrite = false;
/**
* Construct a new Relative Mutable FloatVector.
* @param values float[]; the values of the entries in the new Relative Mutable FloatVector
* @param unit U; the unit of the new Relative Mutable FloatVector
* @param storageType the data type to use (e.g., DENSE or SPARSE)
* @throws ValueException when values is null
*/
AbstractMutableFloatVectorRel(final float[] values, final U unit, final StorageType storageType) throws ValueException
{
super(values, unit, storageType);
}
/**
* Construct a new Relative Mutable FloatVector.
* @param values List; the values of the entries in the new Relative Mutable FloatVector
* @param unit U; the unit of the new Relative Mutable FloatVector
* @param storageType the data type to use (e.g., DENSE or SPARSE)
* @throws ValueException when values is null
*/
AbstractMutableFloatVectorRel(final List<Float> values, final U unit, final StorageType storageType) throws ValueException
{
super(values, unit, storageType);
}
/**
* Construct a new Relative Mutable FloatVector.
* @param values FloatScalar.Rel<U>[]; the values of the entries in the new Relative Mutable FloatVector
* @param storageType the data type to use (e.g., DENSE or SPARSE)
* @throws ValueException when values has zero entries
*/
AbstractMutableFloatVectorRel(final S[] values, final StorageType storageType) throws ValueException
{
super(values, storageType);
}
/**
* Construct a new Relative Mutable FloatVector.
* @param values List; the values of the entries in the new Relative Mutable FloatVector
* @param storageType the data type to use (e.g., DENSE or SPARSE)
* @throws ValueException when values has zero entries
*/
AbstractMutableFloatVectorRel(final List<S> values, final StorageType storageType) throws ValueException
{
super(values, storageType);
}
/**
* Construct a new Relative Mutable FloatVector.
* @param values FloatScalar.Rel<U>[]; the values of the entries in the new Relative Sparse Mutable FloatVector
* @param length the size of the vector
* @param storageType the data type to use (e.g., DENSE or SPARSE)
* @throws ValueException when values has zero entries
*/
AbstractMutableFloatVectorRel(final SortedMap<Integer, S> values, final int length, final StorageType storageType)
throws ValueException
{
super(values, length, storageType);
}
/**
* Construct a new Relative Mutable FloatVector.
* @param values Map; the map of indexes to values of the Relative Sparse Mutable FloatVector
* @param unit U; the unit of the new Relative Sparse Mutable FloatVector
* @param length the size of the vector
* @param storageType the data type to use (e.g., DENSE or SPARSE)
* @throws ValueException when values is null
*/
AbstractMutableFloatVectorRel(final SortedMap<Integer, Float> values, final U unit, final int length,
final StorageType storageType) throws ValueException
{
super(values, unit, length, storageType);
}
/**
* Construct a new Relative Mutable FloatVector.
* @param data an internal data object
* @param unit the unit
*/
AbstractMutableFloatVectorRel(final FloatVectorData data, final U unit)
{
super(data, unit);
}
/**
* Retrieve the value of the copyOnWrite flag.
* @return boolean
*/
private boolean isCopyOnWrite()
{
return this.copyOnWrite;
}
/**
* Change the copyOnWrite flag.
* @param copyOnWrite boolean; the new value for the copyOnWrite flag
*/
final void setCopyOnWrite(final boolean copyOnWrite)
{
this.copyOnWrite = copyOnWrite;
}
/** {@inheritDoc} */
@Override
public final MR mutable()
{
setCopyOnWrite(true);
final MR result = instantiateMutableType(getData(), getUnit());
result.setCopyOnWrite(true);
return result;
}
/**
* Create a immutable version of this MutableFloatVector. <br>
* @return FloatVector<U>; mutable version of this MutableFloatVector
*/
@Override
public R immutable()
{
setCopyOnWrite(true);
return instantiateType(getData(), getUnit());
}
/**********************************************************************************/
/**************************** TYPED CALCULATION METHODS ***************************/
/**********************************************************************************/
/**
* Create a deep copy of this MutableFloatVector. <br>
* @return FloatVector<U>; deep copy of this MutableFloatVector
*/
public final MR copy()
{
return mutable();
}
/**
* Increment the value by the supplied value and return the changed vector.
* @param increment FloatVector.Rel<U>; amount by which the value is incremented
* @return the changed MutableFloatVector.Rel<U>
* @throws ValueException when the size of increment is not identical to the size of this
*/
@SuppressWarnings("unchecked")
public final MR incrementBy(final R increment) throws ValueException
{
checkCopyOnWrite();
this.data.incrementBy(increment.getData());
return (MR) this;
}
/**
* Increment the value by the supplied value and return the changed vector.
* @param increment FloatScalar.Rel<U>; amount by which the value is incremented
* @return the changed MutableFloatVector.Rel<U>
*/
public final MR incrementBy(final S increment)
{
return incrementBy(increment.si);
}
/**
* Increment the value by the supplied constant and return the changed vector.
* @param increment amount by which the value is incremented
* @return the changed MutableFloatVector.Rel<U>
*/
@SuppressWarnings("unchecked")
public final MR incrementBy(final float increment)
{
checkCopyOnWrite();
this.data.incrementBy(increment);
return (MR) this;
}
/**
* Decrement the value by the supplied value and return the changed vector.
* @param decrement FloatVector.Rel<U>; amount by which the value is decremented
* @return the changed MutableFloatVector.Rel<U>
* @throws ValueException when the size of increment is not identical to the size of this
*/
@SuppressWarnings("unchecked")
public final MR decrementBy(final R decrement) throws ValueException
{
checkCopyOnWrite();
this.data.decrementBy(decrement.getData());
return (MR) this;
}
/**
* Decrement the value by the supplied value and return the changed vector.
* @param decrement FloatScalar.Rel<U>; amount by which the value is decremented
* @return the changed MutableFloatVector.Rel<U>
*/
public final MR decrementBy(final S decrement)
{
return decrementBy(decrement.si);
}
/**
* Decrement the value by the supplied constant and return the changed vector.
* @param decrement amount by which the value is decremented
* @return the changed MutableFloatVector.Rel<U>
*/
@SuppressWarnings("unchecked")
public final MR decrementBy(final float decrement)
{
checkCopyOnWrite();
this.data.decrementBy(decrement);
return (MR) this;
}
/**
* Multiply the values in the vector by the supplied values and return the changed vector.
* @param factors FloatVector.Rel<U>; amounts by which the value is multiplied
* @return the changed MutableFloatVector.Rel<U>
* @throws ValueException when the size of the factors is not identical to the size of this
*/
@SuppressWarnings("unchecked")
public final MR multiplyBy(final R factors) throws ValueException
{
checkCopyOnWrite();
this.data.multiplyBy(factors.getData());
return (MR) this;
}
/**
* Multiply the values in the vector by the supplied value and return the changed vector.
* @param factor FloatScalar.Rel<U>; amount by which the values in the vector are multiplied
* @return the changed MutableFloatVector.Rel<U>
*/
public final MR multiplyBy(final S factor)
{
return multiplyBy(factor.si);
}
/** {@inheritDoc} */
@SuppressWarnings("unchecked")
@Override
public final MR multiplyBy(final float factor)
{
checkCopyOnWrite();
this.data.multiplyBy(factor);
return (MR) this;
}
/**
* Divide the values in the vector by the supplied values and return the changed vector.
* @param factors FloatVector.Rel<U>; amounts by which the value is divided
* @return the changed MutableFloatVector.Rel<U>
* @throws ValueException when the size of the factors is not identical to the size of this
*/
@SuppressWarnings("unchecked")
public final MR divideBy(final R factors) throws ValueException
{
checkCopyOnWrite();
this.data.divideBy(factors.getData());
return (MR) this;
}
/** {@inheritDoc} */
@Override
@SuppressWarnings({ "checkstyle:designforextension", "unchecked" })
public MR divideBy(final float factor)
{
this.data.divideBy(factor);
return (MR) this;
}
/**
* Divide the values in the vector by the supplied value and return the changed vector.
* @param factor FloatScalar.Rel<U>; amount by which the values in the vector are divided
* @return the changed MutableFloatVector.Rel<U>
*/
public final MR divideBy(final S factor)
{
return divideBy(factor.si);
}
/**********************************************************************************/
/********************************** MATH METHODS **********************************/
/**********************************************************************************/
/**
* Execute a function on a cell by cell basis. Note: because many functions have to act on zero cells or can generate cells
* with a zero value, the functions have to be applied on a dense dataset which has to be transformed back to a sparse
* dataset if necessary.
* @param floatFunction the function to apply
*/
public final void assign(final FloatFunction floatFunction)
{
checkCopyOnWrite();
if (this.data instanceof FloatVectorDataDense)
{
((FloatVectorDataDense) this.data).assign(floatFunction);
}
else
{
FloatVectorDataDense dvdd = ((FloatVectorDataSparse) this.data).toDense();
dvdd.assign(floatFunction);
this.data = dvdd.toSparse();
}
}
/** {@inheritDoc} */
@SuppressWarnings("unchecked")
@Override
public final MR abs()
{
assign(FloatMathFunctions.ABS);
return (MR) this;
}
/** {@inheritDoc} */
@Override
@SuppressWarnings("unchecked")
public final MR ceil()
{
assign(FloatMathFunctions.CEIL);
return (MR) this;
}
/** {@inheritDoc} */
@Override
@SuppressWarnings("unchecked")
public final MR floor()
{
assign(FloatMathFunctions.FLOOR);
return (MR) this;
}
/** {@inheritDoc} */
@Override
@SuppressWarnings("unchecked")
public final MR neg()
{
assign(FloatMathFunctions.NEG);
return (MR) this;
}
/** {@inheritDoc} */
@Override
@SuppressWarnings("unchecked")
public final MR rint()
{
assign(FloatMathFunctions.RINT);
return (MR) this;
}
/** {@inheritDoc} */
@Override
@SuppressWarnings("unchecked")
public final MR round()
{
assign(FloatMathFunctions.ROUND);
return (MR) this;
}
/**
* Check the copyOnWrite flag and, if it is set, make a deep copy of the data and clear the flag.
*/
protected final void checkCopyOnWrite()
{
if (isCopyOnWrite())
{
this.data = this.data.copy();
setCopyOnWrite(false);
}
}
/**
* Replace the value at index by the supplied value which is expressed in the standard SI unit.
* @param index int; index of the value to replace
* @param valueSI float; the value to store (expressed in the standard SI unit)
* @throws ValueException when index out of range (index < 0 or index >= size())
*/
public final void setSI(final int index, final float valueSI) throws ValueException
{
checkIndex(index);
checkCopyOnWrite();
this.data.setSI(index, valueSI);
}
/**
* Replace the value at index by the supplied value which is in a compatible unit.
* @param index int; index of the value to replace
* @param value FloatScalar<U>; the strongly typed value to store
* @throws ValueException when index out of range (index < 0 or index >= size())
*/
public final void set(final int index, final S value) throws ValueException
{
setSI(index, value.getSI());
}
/**
* Replace the value at index by the supplied value which is expressed in a supplied (compatible) unit.
* @param index int; index of the value to replace
* @param value float; the value to store (which is expressed in valueUnit)
* @param valueUnit U; unit of the supplied value
* @throws ValueException when index out of range (index < 0 or index >= size())
*/
public final void setInUnit(final int index, final float value, final U valueUnit) throws ValueException
{
setSI(index, (float) ValueUtil.expressAsSIUnit(value, valueUnit));
}
/**
* Normalize the vector, i.e. scale the values to make the sum equal to 1.
* @throws ValueException when the sum of the values is zero and normalization is not possible
*/
public final void normalize() throws ValueException
{
float sum = zSum();
if (0 == sum)
{
throw new ValueException("zSum is 0; cannot normalize");
}
checkCopyOnWrite();
this.data.divideBy(sum);
}
}