FloatTorque.java
package org.djunits.value.vfloat.scalar;
import org.djunits.unit.DimensionlessUnit;
import org.djunits.unit.DurationUnit;
import org.djunits.unit.ForceUnit;
import org.djunits.unit.LengthUnit;
import org.djunits.unit.PowerUnit;
import org.djunits.unit.PressureUnit;
import org.djunits.unit.TorqueUnit;
import org.djunits.unit.VolumeUnit;
/**
* Easy access methods for the Torque FloatScalar, which is relative by definition. An example is Speed. Instead of:
*
* <pre>
* FloatScalar.Rel<TorqueUnit> value = new FloatScalar.Rel<TorqueUnit>(100.0, TorqueUnit.SI);
* </pre>
*
* we can now write:
*
* <pre>
* FloatTorque value = new FloatTorque(100.0, TorqueUnit.SI);
* </pre>
*
* The compiler will automatically recognize which units belong to which quantity, and whether the quantity type and the unit
* used are compatible.
* <p>
* Copyright (c) 2013-2018 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
* BSD-style license. See <a href="http://djunits.org/docs/license.html">DJUNITS License</a>.
* <p>
* $LastChangedDate: 2018-01-28 03:17:44 +0100 (Sun, 28 Jan 2018) $, @version $Revision: 256 $, by $Author: averbraeck $,
* initial version Sep 5, 2015 <br>
* @author <a href="http://www.tbm.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="http://www.tudelft.nl/pknoppers">Peter Knoppers</a>
*/
public class FloatTorque extends AbstractFloatScalarRel<TorqueUnit, FloatTorque>
{
/** */
private static final long serialVersionUID = 20150901L;
/** constant with value zero. */
public static final FloatTorque ZERO = new FloatTorque(0.0f, TorqueUnit.SI);
/** constant with value NaN. */
@SuppressWarnings("checkstyle:constantname")
public static final FloatTorque NaN = new FloatTorque(Float.NaN, TorqueUnit.SI);
/** constant with value POSITIVE_INFINITY. */
public static final FloatTorque POSITIVE_INFINITY = new FloatTorque(Float.POSITIVE_INFINITY, TorqueUnit.SI);
/** constant with value NEGATIVE_INFINITY. */
public static final FloatTorque NEGATIVE_INFINITY = new FloatTorque(Float.NEGATIVE_INFINITY, TorqueUnit.SI);
/** constant with value MAX_VALUE. */
public static final FloatTorque POS_MAXVALUE = new FloatTorque(Float.MAX_VALUE, TorqueUnit.SI);
/** constant with value -MAX_VALUE. */
public static final FloatTorque NEG_MAXVALUE = new FloatTorque(-Float.MAX_VALUE, TorqueUnit.SI);
/**
* Construct FloatTorque scalar.
* @param value float value
* @param unit unit for the float value
*/
public FloatTorque(final float value, final TorqueUnit unit)
{
super(value, unit);
}
/**
* Construct FloatTorque scalar.
* @param value Scalar from which to construct this instance
*/
public FloatTorque(final FloatTorque value)
{
super(value);
}
/**
* Construct FloatTorque scalar using a double value.
* @param value double value
* @param unit unit for the resulting float value
*/
public FloatTorque(final double value, final TorqueUnit unit)
{
super((float) value, unit);
}
/** {@inheritDoc} */
@Override
public final FloatTorque instantiateRel(final float value, final TorqueUnit unit)
{
return new FloatTorque(value, unit);
}
/**
* Construct FloatTorque scalar.
* @param value float value in SI units
* @return the new scalar with the SI value
*/
public static final FloatTorque createSI(final float value)
{
return new FloatTorque(value, TorqueUnit.SI);
}
/**
* Interpolate between two values.
* @param zero the low value
* @param one the high value
* @param ratio the ratio between 0 and 1, inclusive
* @return a Scalar at the ratio between
*/
public static FloatTorque interpolate(final FloatTorque zero, final FloatTorque one, final float ratio)
{
return new FloatTorque(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getUnit()) * ratio, zero.getUnit());
}
/**
* Return the maximum value of two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @return the maximum value of two relative scalars
*/
public static FloatTorque max(final FloatTorque r1, final FloatTorque r2)
{
return (r1.gt(r2)) ? r1 : r2;
}
/**
* Return the maximum value of more than two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @param rn the other scalars
* @return the maximum value of more than two relative scalars
*/
public static FloatTorque max(final FloatTorque r1, final FloatTorque r2, final FloatTorque... rn)
{
FloatTorque maxr = (r1.gt(r2)) ? r1 : r2;
for (FloatTorque r : rn)
{
if (r.gt(maxr))
{
maxr = r;
}
}
return maxr;
}
/**
* Return the minimum value of two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @return the minimum value of two relative scalars
*/
public static FloatTorque min(final FloatTorque r1, final FloatTorque r2)
{
return (r1.lt(r2)) ? r1 : r2;
}
/**
* Return the minimum value of more than two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @param rn the other scalars
* @return the minimum value of more than two relative scalars
*/
public static FloatTorque min(final FloatTorque r1, final FloatTorque r2, final FloatTorque... rn)
{
FloatTorque minr = (r1.lt(r2)) ? r1 : r2;
for (FloatTorque r : rn)
{
if (r.lt(minr))
{
minr = r;
}
}
return minr;
}
/**
* Calculate the division of FloatTorque and FloatTorque, which results in a FloatDimensionless scalar.
* @param v FloatTorque scalar
* @return FloatDimensionless scalar as a division of FloatTorque and FloatTorque
*/
public final FloatDimensionless divideBy(final FloatTorque v)
{
return new FloatDimensionless(this.si / v.si, DimensionlessUnit.SI);
}
/**
* Calculate the division of FloatTorque and FloatForce, which results in a FloatLength scalar.
* @param v FloatTorque scalar
* @return FloatLength scalar as a division of FloatTorque and FloatForce
*/
public final FloatLength divideBy(final FloatForce v)
{
return new FloatLength(this.si / v.si, LengthUnit.SI);
}
/**
* Calculate the division of FloatTorque and FloatLength, which results in a FloatForce scalar.
* @param v FloatTorque scalar
* @return FloatForce scalar as a division of FloatTorque and FloatLength
*/
public final FloatForce divideBy(final FloatLength v)
{
return new FloatForce(this.si / v.si, ForceUnit.SI);
}
/**
* Calculate the multiplication of FloatTorque and FloatLinearDensity, which results in a FloatForce scalar.
* @param v FloatTorque scalar
* @return FloatForce scalar as a multiplication of FloatTorque and FloatLinearDensity
*/
public final FloatForce multiplyBy(final FloatLinearDensity v)
{
return new FloatForce(this.si * v.si, ForceUnit.SI);
}
/**
* Calculate the division of FloatTorque and FloatDuration, which results in a FloatPower scalar.
* @param v FloatTorque scalar
* @return FloatPower scalar as a division of FloatTorque and FloatDuration
*/
public final FloatPower divideBy(final FloatDuration v)
{
return new FloatPower(this.si / v.si, PowerUnit.SI);
}
/**
* Calculate the division of FloatTorque and FloatPower, which results in a FloatDuration scalar.
* @param v FloatTorque scalar
* @return FloatDuration scalar as a division of FloatTorque and FloatPower
*/
public final FloatDuration divideBy(final FloatPower v)
{
return new FloatDuration(this.si / v.si, DurationUnit.SI);
}
/**
* Calculate the multiplication of FloatTorque and FloatFrequency, which results in a FloatPower scalar.
* @param v FloatTorque scalar
* @return FloatPower scalar as a multiplication of FloatTorque and FloatFrequency
*/
public final FloatPower multiplyBy(final FloatFrequency v)
{
return new FloatPower(this.si * v.si, PowerUnit.SI);
}
/**
* Calculate the division of FloatTorque and FloatVolume, which results in a FloatPressure scalar.
* @param v FloatTorque scalar
* @return FloatPressure scalar as a division of FloatTorque and FloatVolume
*/
public final FloatPressure divideBy(final FloatVolume v)
{
return new FloatPressure(this.si / v.si, PressureUnit.SI);
}
/**
* Calculate the division of FloatTorque and FloatPressure, which results in a FloatVolume scalar.
* @param v FloatTorque scalar
* @return FloatVolume scalar as a division of FloatTorque and FloatPressure
*/
public final FloatVolume divideBy(final FloatPressure v)
{
return new FloatVolume(this.si / v.si, VolumeUnit.SI);
}
}