FloatForce.java
package org.djunits.value.vfloat.scalar;
import org.djunits.unit.AccelerationUnit;
import org.djunits.unit.AreaUnit;
import org.djunits.unit.DimensionlessUnit;
import org.djunits.unit.EnergyUnit;
import org.djunits.unit.ForceUnit;
import org.djunits.unit.LinearDensityUnit;
import org.djunits.unit.MassUnit;
import org.djunits.unit.PowerUnit;
import org.djunits.unit.PressureUnit;
/**
* Easy access methods for the Force FloatScalar, which is relative by definition. An example is Speed. Instead of:
*
* <pre>
* FloatScalar.Rel<ForceUnit> value = new FloatScalar.Rel<ForceUnit>(100.0, ForceUnit.SI);
* </pre>
*
* we can now write:
*
* <pre>
* FloatForce value = new FloatForce(100.0, ForceUnit.SI);
* </pre>
*
* The compiler will automatically recognize which units belong to which quantity, and whether the quantity type and the unit
* used are compatible.
* <p>
* Copyright (c) 2013-2018 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
* BSD-style license. See <a href="http://djunits.org/docs/license.html">DJUNITS License</a>.
* <p>
* $LastChangedDate: 2018-01-28 03:17:44 +0100 (Sun, 28 Jan 2018) $, @version $Revision: 256 $, by $Author: averbraeck $,
* initial version Sep 5, 2015 <br>
* @author <a href="http://www.tbm.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="http://www.tudelft.nl/pknoppers">Peter Knoppers</a>
*/
public class FloatForce extends AbstractFloatScalarRel<ForceUnit, FloatForce>
{
/** */
private static final long serialVersionUID = 20150901L;
/** constant with value zero. */
public static final FloatForce ZERO = new FloatForce(0.0f, ForceUnit.SI);
/** constant with value NaN. */
@SuppressWarnings("checkstyle:constantname")
public static final FloatForce NaN = new FloatForce(Float.NaN, ForceUnit.SI);
/** constant with value POSITIVE_INFINITY. */
public static final FloatForce POSITIVE_INFINITY = new FloatForce(Float.POSITIVE_INFINITY, ForceUnit.SI);
/** constant with value NEGATIVE_INFINITY. */
public static final FloatForce NEGATIVE_INFINITY = new FloatForce(Float.NEGATIVE_INFINITY, ForceUnit.SI);
/** constant with value MAX_VALUE. */
public static final FloatForce POS_MAXVALUE = new FloatForce(Float.MAX_VALUE, ForceUnit.SI);
/** constant with value -MAX_VALUE. */
public static final FloatForce NEG_MAXVALUE = new FloatForce(-Float.MAX_VALUE, ForceUnit.SI);
/**
* Construct FloatForce scalar.
* @param value float value
* @param unit unit for the float value
*/
public FloatForce(final float value, final ForceUnit unit)
{
super(value, unit);
}
/**
* Construct FloatForce scalar.
* @param value Scalar from which to construct this instance
*/
public FloatForce(final FloatForce value)
{
super(value);
}
/**
* Construct FloatForce scalar using a double value.
* @param value double value
* @param unit unit for the resulting float value
*/
public FloatForce(final double value, final ForceUnit unit)
{
super((float) value, unit);
}
/** {@inheritDoc} */
@Override
public final FloatForce instantiateRel(final float value, final ForceUnit unit)
{
return new FloatForce(value, unit);
}
/**
* Construct FloatForce scalar.
* @param value float value in SI units
* @return the new scalar with the SI value
*/
public static final FloatForce createSI(final float value)
{
return new FloatForce(value, ForceUnit.SI);
}
/**
* Interpolate between two values.
* @param zero the low value
* @param one the high value
* @param ratio the ratio between 0 and 1, inclusive
* @return a Scalar at the ratio between
*/
public static FloatForce interpolate(final FloatForce zero, final FloatForce one, final float ratio)
{
return new FloatForce(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getUnit()) * ratio, zero.getUnit());
}
/**
* Return the maximum value of two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @return the maximum value of two relative scalars
*/
public static FloatForce max(final FloatForce r1, final FloatForce r2)
{
return (r1.gt(r2)) ? r1 : r2;
}
/**
* Return the maximum value of more than two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @param rn the other scalars
* @return the maximum value of more than two relative scalars
*/
public static FloatForce max(final FloatForce r1, final FloatForce r2, final FloatForce... rn)
{
FloatForce maxr = (r1.gt(r2)) ? r1 : r2;
for (FloatForce r : rn)
{
if (r.gt(maxr))
{
maxr = r;
}
}
return maxr;
}
/**
* Return the minimum value of two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @return the minimum value of two relative scalars
*/
public static FloatForce min(final FloatForce r1, final FloatForce r2)
{
return (r1.lt(r2)) ? r1 : r2;
}
/**
* Return the minimum value of more than two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @param rn the other scalars
* @return the minimum value of more than two relative scalars
*/
public static FloatForce min(final FloatForce r1, final FloatForce r2, final FloatForce... rn)
{
FloatForce minr = (r1.lt(r2)) ? r1 : r2;
for (FloatForce r : rn)
{
if (r.lt(minr))
{
minr = r;
}
}
return minr;
}
/**
* Calculate the division of FloatForce and FloatForce, which results in a FloatDimensionless scalar.
* @param v FloatForce scalar
* @return FloatDimensionless scalar as a division of FloatForce and FloatForce
*/
public final FloatDimensionless divideBy(final FloatForce v)
{
return new FloatDimensionless(this.si / v.si, DimensionlessUnit.SI);
}
/**
* Calculate the multiplication of FloatForce and FloatLength, which results in a FloatEnergy scalar.
* @param v FloatForce scalar
* @return FloatEnergy scalar as a multiplication of FloatForce and FloatLength
*/
public final FloatEnergy multiplyBy(final FloatLength v)
{
return new FloatEnergy(this.si * v.si, EnergyUnit.SI);
}
/**
* Calculate the division of FloatForce and FloatLinearDensity, which results in a FloatEnergy scalar.
* @param v FloatForce scalar
* @return FloatEnergy scalar as a division of FloatForce and FloatLinearDensity
*/
public final FloatEnergy divideBy(final FloatLinearDensity v)
{
return new FloatEnergy(this.si / v.si, EnergyUnit.SI);
}
/**
* Calculate the division of FloatForce and FloatEnergy, which results in a FloatLinearDensity scalar.
* @param v FloatForce scalar
* @return FloatLinearDensity scalar as a division of FloatForce and FloatEnergy
*/
public final FloatLinearDensity divideBy(final FloatEnergy v)
{
return new FloatLinearDensity(this.si / v.si, LinearDensityUnit.SI);
}
/**
* Calculate the multiplication of FloatForce and FloatSpeed, which results in a FloatPower scalar.
* @param v FloatForce scalar
* @return FloatPower scalar as a multiplication of FloatForce and FloatSpeed
*/
public final FloatPower multiplyBy(final FloatSpeed v)
{
return new FloatPower(this.si * v.si, PowerUnit.SI);
}
/**
* Calculate the division of FloatForce and FloatMass, which results in a FloatAcceleration scalar.
* @param v FloatForce scalar
* @return FloatAcceleration scalar as a division of FloatForce and FloatMass
*/
public final FloatAcceleration divideBy(final FloatMass v)
{
return new FloatAcceleration(this.si / v.si, AccelerationUnit.SI);
}
/**
* Calculate the division of FloatForce and FloatAcceleration, which results in a FloatMass scalar.
* @param v FloatForce scalar
* @return FloatMass scalar as a division of FloatForce and FloatAcceleration
*/
public final FloatMass divideBy(final FloatAcceleration v)
{
return new FloatMass(this.si / v.si, MassUnit.SI);
}
/**
* Calculate the division of FloatForce and FloatArea, which results in a FloatPressure scalar.
* @param v FloatForce scalar
* @return FloatPressure scalar as a division of FloatForce and FloatArea
*/
public final FloatPressure divideBy(final FloatArea v)
{
return new FloatPressure(this.si / v.si, PressureUnit.SI);
}
/**
* Calculate the division of FloatForce and FloatPressure, which results in a FloatArea scalar.
* @param v FloatForce scalar
* @return FloatArea scalar as a division of FloatForce and FloatPressure
*/
public final FloatArea divideBy(final FloatPressure v)
{
return new FloatArea(this.si / v.si, AreaUnit.SI);
}
}