Temperature.java
package org.djunits.value.vdouble.scalar;
import org.djunits.unit.AbsoluteTemperatureUnit;
import org.djunits.unit.DimensionlessUnit;
import org.djunits.unit.TemperatureUnit;
/**
* Easy access methods for the Relative Temperature DoubleScalar. Instead of:
*
* <pre>
* DoubleScalar<TemperatureUnit> value = new DoubleScalar<TemperatureUnit>(100.0, TemperatureUnit.SI);
* </pre>
*
* we can now write:
*
* <pre>
* Temperature value = new Temperature(100.0, TemperatureUnit.SI);
* </pre>
*
* The compiler will automatically recognize which units belong to which quantity, and whether the quantity type and the unit
* used are compatible.
* <p>
* Copyright (c) 2013-2018 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. <br>
* All rights reserved. <br>
* BSD-style license. See <a href="http://opentrafficsim.org/docs/license.html">OpenTrafficSim License</a>.
* <p>
* $LastChangedDate: 2018-01-28 03:17:44 +0100 (Sun, 28 Jan 2018) $, @version $Revision: 256 $, by $Author: averbraeck $,
* initial version Sep 1, 2015 <br>
* @author <a href="http://www.tbm.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="http://www.tudelft.nl/pknoppers">Peter Knoppers</a>
*/
public class Temperature extends AbstractDoubleScalarRel<TemperatureUnit, Temperature>
{
/** */
private static final long serialVersionUID = 20150901L;
/** constant with value zero. */
public static final Temperature ZERO = new Temperature(0.0, TemperatureUnit.SI);
/** constant with value NaN. */
@SuppressWarnings("checkstyle:constantname")
public static final Temperature NaN = new Temperature(Double.NaN, TemperatureUnit.SI);
/** constant with value POSITIVE_INFINITY. */
public static final Temperature POSITIVE_INFINITY = new Temperature(Double.POSITIVE_INFINITY, TemperatureUnit.SI);
/** constant with value NEGATIVE_INFINITY. */
public static final Temperature NEGATIVE_INFINITY = new Temperature(Double.NEGATIVE_INFINITY, TemperatureUnit.SI);
/** constant with value MAX_VALUE. */
public static final Temperature POS_MAXVALUE = new Temperature(Double.MAX_VALUE, TemperatureUnit.SI);
/** constant with value -MAX_VALUE. */
public static final Temperature NEG_MAXVALUE = new Temperature(-Double.MAX_VALUE, TemperatureUnit.SI);
/**
* Construct Temperature scalar.
* @param value double value
* @param unit unit for the double value
*/
public Temperature(final double value, final TemperatureUnit unit)
{
super(value, unit);
}
/**
* Construct Temperature scalar.
* @param value Scalar from which to construct this instance
*/
public Temperature(final Temperature value)
{
super(value);
}
/** {@inheritDoc} */
@Override
public final Temperature instantiateRel(final double value, final TemperatureUnit unit)
{
return new Temperature(value, unit);
}
/**
* Construct a new Absolute Immutable DoubleScalar of the right type. Each extending class must implement this method.
* @param value the double value
* @param unit the unit
* @return A a new absolute instance of the DoubleScalar of the right type
*/
public final AbsoluteTemperature instantiateAbs(final double value, final AbsoluteTemperatureUnit unit)
{
return new AbsoluteTemperature(value, unit);
}
/**
* Construct Temperature scalar.
* @param value double value in SI units
* @return the new scalar with the SI value
*/
public static final Temperature createSI(final double value)
{
return new Temperature(value, TemperatureUnit.SI);
}
/**
* Interpolate between two values.
* @param zero the low value
* @param one the high value
* @param ratio the ratio between 0 and 1, inclusive
* @return a Scalar at the ratio between
*/
public static Temperature interpolate(final Temperature zero, final Temperature one, final double ratio)
{
return new Temperature(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getUnit()) * ratio, zero.getUnit());
}
/**
* Relative scalar plus Absolute scalar = Absolute scalar.
* @param v the value to add
* @return sum of this value and v as a new object
*/
public final AbsoluteTemperature plus(final AbsoluteTemperature v)
{
AbsoluteTemperatureUnit targetUnit = v.getUnit();
return instantiateAbs(v.getInUnit() + getInUnit(targetUnit.getRelativeUnit()), targetUnit);
}
/**
* Return the maximum value of two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @return the maximum value of two relative scalars
*/
public static Temperature max(final Temperature r1, final Temperature r2)
{
return (r1.gt(r2)) ? r1 : r2;
}
/**
* Return the maximum value of more than two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @param rn the other scalars
* @return the maximum value of more than two relative scalars
*/
public static Temperature max(final Temperature r1, final Temperature r2, final Temperature... rn)
{
Temperature maxr = (r1.gt(r2)) ? r1 : r2;
for (Temperature r : rn)
{
if (r.gt(maxr))
{
maxr = r;
}
}
return maxr;
}
/**
* Return the minimum value of two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @return the minimum value of two relative scalars
*/
public static Temperature min(final Temperature r1, final Temperature r2)
{
return (r1.lt(r2)) ? r1 : r2;
}
/**
* Return the minimum value of more than two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @param rn the other scalars
* @return the minimum value of more than two relative scalars
*/
public static Temperature min(final Temperature r1, final Temperature r2, final Temperature... rn)
{
Temperature minr = (r1.lt(r2)) ? r1 : r2;
for (Temperature r : rn)
{
if (r.lt(minr))
{
minr = r;
}
}
return minr;
}
/**
* Calculate the division of Temperature and Temperature, which results in a Dimensionless scalar.
* @param v Temperature scalar
* @return Dimensionless scalar as a division of Temperature and Temperature
*/
public final Dimensionless divideBy(final Temperature v)
{
return new Dimensionless(this.si / v.si, DimensionlessUnit.SI);
}
}