Power.java

package org.djunits.value.vdouble.scalar;

import org.djunits.unit.DimensionlessUnit;
import org.djunits.unit.ElectricalCurrentUnit;
import org.djunits.unit.ElectricalPotentialUnit;
import org.djunits.unit.EnergyUnit;
import org.djunits.unit.ForceUnit;
import org.djunits.unit.FrequencyUnit;
import org.djunits.unit.PowerUnit;
import org.djunits.unit.SpeedUnit;

/**
 * Easy access methods for the Power DoubleScalar, which is relative by definition. Instead of:
 * 
 * <pre>
 * DoubleScalar.Rel&lt;PowerUnit&gt; value = new DoubleScalar.Rel&lt;PowerUnit&gt;(100.0, PowerUnit.SI);
 * </pre>
 * 
 * we can now write:
 * 
 * <pre>
 * Power value = new Power(100.0, PowerUnit.SI);
 * </pre>
 * 
 * The compiler will automatically recognize which units belong to which quantity, and whether the quantity type and the unit
 * used are compatible.
 * <p>
 * Copyright (c) 2013-2018 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
 * BSD-style license. See <a href="http://djunits.org/docs/license.html">DJUNITS License</a>.
 * <p>
 * $LastChangedDate: 2018-01-28 03:17:44 +0100 (Sun, 28 Jan 2018) $, @version $Revision: 256 $, by $Author: averbraeck $,
 * initial version Sep 5, 2015 <br>
 * @author <a href="http://www.tbm.tudelft.nl/averbraeck">Alexander Verbraeck</a>
 * @author <a href="http://www.tudelft.nl/pknoppers">Peter Knoppers</a>
 */
public class Power extends AbstractDoubleScalarRel<PowerUnit, Power>
{
    /** */
    private static final long serialVersionUID = 20150905L;

    /** constant with value zero. */
    public static final Power ZERO = new Power(0.0, PowerUnit.SI);

    /** constant with value NaN. */
    @SuppressWarnings("checkstyle:constantname")
    public static final Power NaN = new Power(Double.NaN, PowerUnit.SI);

    /** constant with value POSITIVE_INFINITY. */
    public static final Power POSITIVE_INFINITY = new Power(Double.POSITIVE_INFINITY, PowerUnit.SI);

    /** constant with value NEGATIVE_INFINITY. */
    public static final Power NEGATIVE_INFINITY = new Power(Double.NEGATIVE_INFINITY, PowerUnit.SI);

    /** constant with value MAX_VALUE. */
    public static final Power POS_MAXVALUE = new Power(Double.MAX_VALUE, PowerUnit.SI);

    /** constant with value -MAX_VALUE. */
    public static final Power NEG_MAXVALUE = new Power(-Double.MAX_VALUE, PowerUnit.SI);

    /**
     * Construct Power scalar.
     * @param value double value
     * @param unit unit for the double value
     */
    public Power(final double value, final PowerUnit unit)
    {
        super(value, unit);
    }

    /**
     * Construct Power scalar.
     * @param value Scalar from which to construct this instance
     */
    public Power(final Power value)
    {
        super(value);
    }

    /** {@inheritDoc} */
    @Override
    public final Power instantiateRel(final double value, final PowerUnit unit)
    {
        return new Power(value, unit);
    }

    /**
     * Construct Power scalar.
     * @param value double value in SI units
     * @return the new scalar with the SI value
     */
    public static final Power createSI(final double value)
    {
        return new Power(value, PowerUnit.SI);
    }

    /**
     * Interpolate between two values.
     * @param zero the low value
     * @param one the high value
     * @param ratio the ratio between 0 and 1, inclusive
     * @return a Scalar at the ratio between
     */
    public static Power interpolate(final Power zero, final Power one, final double ratio)
    {
        return new Power(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getUnit()) * ratio, zero.getUnit());
    }

    /**
     * Return the maximum value of two relative scalars.
     * @param r1 the first scalar
     * @param r2 the second scalar
     * @return the maximum value of two relative scalars
     */
    public static Power max(final Power r1, final Power r2)
    {
        return (r1.gt(r2)) ? r1 : r2;
    }

    /**
     * Return the maximum value of more than two relative scalars.
     * @param r1 the first scalar
     * @param r2 the second scalar
     * @param rn the other scalars
     * @return the maximum value of more than two relative scalars
     */
    public static Power max(final Power r1, final Power r2, final Power... rn)
    {
        Power maxr = (r1.gt(r2)) ? r1 : r2;
        for (Power r : rn)
        {
            if (r.gt(maxr))
            {
                maxr = r;
            }
        }
        return maxr;
    }

    /**
     * Return the minimum value of two relative scalars.
     * @param r1 the first scalar
     * @param r2 the second scalar
     * @return the minimum value of two relative scalars
     */
    public static Power min(final Power r1, final Power r2)
    {
        return (r1.lt(r2)) ? r1 : r2;
    }

    /**
     * Return the minimum value of more than two relative scalars.
     * @param r1 the first scalar
     * @param r2 the second scalar
     * @param rn the other scalars
     * @return the minimum value of more than two relative scalars
     */
    public static Power min(final Power r1, final Power r2, final Power... rn)
    {
        Power minr = (r1.lt(r2)) ? r1 : r2;
        for (Power r : rn)
        {
            if (r.lt(minr))
            {
                minr = r;
            }
        }
        return minr;
    }

    /**
     * Calculate the division of Power and Power, which results in a Dimensionless scalar.
     * @param v Power scalar
     * @return Dimensionless scalar as a division of Power and Power
     */
    public final Dimensionless divideBy(final Power v)
    {
        return new Dimensionless(this.si / v.si, DimensionlessUnit.SI);
    }

    /**
     * Calculate the multiplication of Power and Duration, which results in a Energy scalar.
     * @param v Power scalar
     * @return Energy scalar as a multiplication of Power and Duration
     */
    public final Energy multiplyBy(final Duration v)
    {
        return new Energy(this.si * v.si, EnergyUnit.SI);
    }

    /**
     * Calculate the division of Power and Frequency, which results in a Energy scalar.
     * @param v Power scalar
     * @return Energy scalar as a division of Power and Frequency
     */
    public final Energy divideBy(final Frequency v)
    {
        return new Energy(this.si / v.si, EnergyUnit.SI);
    }

    /**
     * Calculate the division of Power and Energy, which results in a Frequency scalar.
     * @param v Power scalar
     * @return Frequency scalar as a division of Power and Energy
     */
    public final Frequency divideBy(final Energy v)
    {
        return new Frequency(this.si / v.si, FrequencyUnit.SI);
    }

    /**
     * Calculate the division of Power and Speed, which results in a Force scalar.
     * @param v Power scalar
     * @return Force scalar as a division of Power and Speed
     */
    public final Force divideBy(final Speed v)
    {
        return new Force(this.si / v.si, ForceUnit.SI);
    }

    /**
     * Calculate the division of Power and Force, which results in a Speed scalar.
     * @param v Power scalar
     * @return Speed scalar as a division of Power and Force
     */
    public final Speed divideBy(final Force v)
    {
        return new Speed(this.si / v.si, SpeedUnit.SI);
    }

    /**
     * Calculate the division of Power and ElectricalPotential, which results in a ElectricalCurrent scalar.
     * @param v Power scalar
     * @return ElectricalCurrent scalar as a division of Power and ElectricalPotential
     */
    public final ElectricalCurrent divideBy(final ElectricalPotential v)
    {
        return new ElectricalCurrent(this.si / v.si, ElectricalCurrentUnit.SI);
    }

    /**
     * Calculate the division of Power and ElectricalCurrent, which results in a ElectricalPotential scalar.
     * @param v Power scalar
     * @return ElectricalPotential scalar as a division of Power and ElectricalCurrent
     */
    public final ElectricalPotential divideBy(final ElectricalCurrent v)
    {
        return new ElectricalPotential(this.si / v.si, ElectricalPotentialUnit.SI);
    }

}