Frequency.java
package org.djunits.value.vdouble.scalar;
import org.djunits.unit.AccelerationUnit;
import org.djunits.unit.DimensionlessUnit;
import org.djunits.unit.FrequencyUnit;
import org.djunits.unit.MoneyPerDurationUnit;
import org.djunits.unit.PowerUnit;
import org.djunits.unit.SpeedUnit;
/**
* Easy access methods for the Frequency DoubleScalar, which is relative by definition. Instead of:
*
* <pre>
* DoubleScalar.Rel<FrequencyUnit> value = new DoubleScalar.Rel<FrequencyUnit>(100.0, FrequencyUnit.SI);
* </pre>
*
* we can now write:
*
* <pre>
* Frequency value = new Frequency(100.0, FrequencyUnit.SI);
* </pre>
*
* The compiler will automatically recognize which units belong to which quantity, and whether the quantity type and the unit
* used are compatible.
* <p>
* Copyright (c) 2013-2018 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
* BSD-style license. See <a href="http://djunits.org/docs/license.html">DJUNITS License</a>.
* <p>
* $LastChangedDate: 2018-01-28 03:17:44 +0100 (Sun, 28 Jan 2018) $, @version $Revision: 256 $, by $Author: averbraeck $,
* initial version Sep 5, 2015 <br>
* @author <a href="http://www.tbm.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="http://www.tudelft.nl/pknoppers">Peter Knoppers</a>
*/
public class Frequency extends AbstractDoubleScalarRel<FrequencyUnit, Frequency>
{
/** */
private static final long serialVersionUID = 20150905L;
/** constant with value zero. */
public static final Frequency ZERO = new Frequency(0.0, FrequencyUnit.SI);
/** constant with value NaN. */
@SuppressWarnings("checkstyle:constantname")
public static final Frequency NaN = new Frequency(Double.NaN, FrequencyUnit.SI);
/** constant with value POSITIVE_INFINITY. */
public static final Frequency POSITIVE_INFINITY = new Frequency(Double.POSITIVE_INFINITY, FrequencyUnit.SI);
/** constant with value NEGATIVE_INFINITY. */
public static final Frequency NEGATIVE_INFINITY = new Frequency(Double.NEGATIVE_INFINITY, FrequencyUnit.SI);
/** constant with value MAX_VALUE. */
public static final Frequency POS_MAXVALUE = new Frequency(Double.MAX_VALUE, FrequencyUnit.SI);
/** constant with value -MAX_VALUE. */
public static final Frequency NEG_MAXVALUE = new Frequency(-Double.MAX_VALUE, FrequencyUnit.SI);
/**
* Construct Frequency scalar.
* @param value double value
* @param unit unit for the double value
*/
public Frequency(final double value, final FrequencyUnit unit)
{
super(value, unit);
}
/**
* Construct Frequency scalar.
* @param value Scalar from which to construct this instance
*/
public Frequency(final Frequency value)
{
super(value);
}
/** {@inheritDoc} */
@Override
public final Frequency instantiateRel(final double value, final FrequencyUnit unit)
{
return new Frequency(value, unit);
}
/**
* Construct Frequency scalar.
* @param value double value in SI units
* @return the new scalar with the SI value
*/
public static final Frequency createSI(final double value)
{
return new Frequency(value, FrequencyUnit.SI);
}
/**
* Interpolate between two values.
* @param zero the low value
* @param one the high value
* @param ratio the ratio between 0 and 1, inclusive
* @return a Scalar at the ratio between
*/
public static Frequency interpolate(final Frequency zero, final Frequency one, final double ratio)
{
return new Frequency(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getUnit()) * ratio, zero.getUnit());
}
/**
* Return the maximum value of two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @return the maximum value of two relative scalars
*/
public static Frequency max(final Frequency r1, final Frequency r2)
{
return (r1.gt(r2)) ? r1 : r2;
}
/**
* Return the maximum value of more than two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @param rn the other scalars
* @return the maximum value of more than two relative scalars
*/
public static Frequency max(final Frequency r1, final Frequency r2, final Frequency... rn)
{
Frequency maxr = (r1.gt(r2)) ? r1 : r2;
for (Frequency r : rn)
{
if (r.gt(maxr))
{
maxr = r;
}
}
return maxr;
}
/**
* Return the minimum value of two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @return the minimum value of two relative scalars
*/
public static Frequency min(final Frequency r1, final Frequency r2)
{
return (r1.lt(r2)) ? r1 : r2;
}
/**
* Return the minimum value of more than two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @param rn the other scalars
* @return the minimum value of more than two relative scalars
*/
public static Frequency min(final Frequency r1, final Frequency r2, final Frequency... rn)
{
Frequency minr = (r1.lt(r2)) ? r1 : r2;
for (Frequency r : rn)
{
if (r.lt(minr))
{
minr = r;
}
}
return minr;
}
/**
* Calculate the division of Frequency and Frequency, which results in a Dimensionless scalar.
* @param v Frequency scalar
* @return Dimensionless scalar as a division of Frequency and Frequency
*/
public final Dimensionless divideBy(final Frequency v)
{
return new Dimensionless(this.si / v.si, DimensionlessUnit.SI);
}
/**
* Calculate the multiplication of Frequency and Duration, which results in a Dimensionless scalar.
* @param v Frequency scalar
* @return Dimensionless scalar as a multiplication of Frequency and Duration
*/
public final Dimensionless multiplyBy(final Duration v)
{
return new Dimensionless(this.si * v.si, DimensionlessUnit.SI);
}
/**
* Calculate the multiplication of Frequency and Length, which results in a Speed scalar.
* @param v Frequency scalar
* @return Speed scalar as a multiplication of Frequency and Length
*/
public final Speed multiplyBy(final Length v)
{
return new Speed(this.si * v.si, SpeedUnit.SI);
}
/**
* Calculate the multiplication of Frequency and Speed, which results in a Acceleration scalar.
* @param v Frequency scalar
* @return Acceleration scalar as a multiplication of Frequency and Speed
*/
public final Acceleration multiplyBy(final Speed v)
{
return new Acceleration(this.si * v.si, AccelerationUnit.SI);
}
/**
* Calculate the multiplication of Frequency and Energy, which results in a Power scalar.
* @param v Frequency scalar
* @return Power scalar as a multiplication of Frequency and Energy
*/
public final Power multiplyBy(final Energy v)
{
return new Power(this.si * v.si, PowerUnit.SI);
}
/**
* Calculate the multiplication of Frequency and Money, which results in a MoneyPerDuration scalar.
* @param v Frequency scalar
* @return MoneyPerDuration scalar as a multiplication of Frequency and Money
*/
public final MoneyPerDuration multiplyBy(final Money v)
{
return new MoneyPerDuration(this.si * v.si, MoneyPerDurationUnit.getStandardMoneyPerDurationUnit());
}
}