Force.java
package org.djunits.value.vdouble.scalar;
import org.djunits.unit.AccelerationUnit;
import org.djunits.unit.AreaUnit;
import org.djunits.unit.DimensionlessUnit;
import org.djunits.unit.EnergyUnit;
import org.djunits.unit.ForceUnit;
import org.djunits.unit.LinearDensityUnit;
import org.djunits.unit.MassUnit;
import org.djunits.unit.PowerUnit;
import org.djunits.unit.PressureUnit;
/**
* Easy access methods for the Force DoubleScalar, which is relative by definition. Instead of:
*
* <pre>
* DoubleScalar.Rel<ForceUnit> value = new DoubleScalar.Rel<ForceUnit>(100.0, ForceUnit.SI);
* </pre>
*
* we can now write:
*
* <pre>
* Force value = new Force(100.0, ForceUnit.SI);
* </pre>
*
* The compiler will automatically recognize which units belong to which quantity, and whether the quantity type and the unit
* used are compatible.
* <p>
* Copyright (c) 2013-2018 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
* BSD-style license. See <a href="http://djunits.org/docs/license.html">DJUNITS License</a>.
* <p>
* $LastChangedDate: 2018-01-28 03:17:44 +0100 (Sun, 28 Jan 2018) $, @version $Revision: 256 $, by $Author: averbraeck $,
* initial version Sep 5, 2015 <br>
* @author <a href="http://www.tbm.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="http://www.tudelft.nl/pknoppers">Peter Knoppers</a>
*/
public class Force extends AbstractDoubleScalarRel<ForceUnit, Force>
{
/** */
private static final long serialVersionUID = 20150905L;
/** constant with value zero. */
public static final Force ZERO = new Force(0.0, ForceUnit.SI);
/** constant with value NaN. */
@SuppressWarnings("checkstyle:constantname")
public static final Force NaN = new Force(Double.NaN, ForceUnit.SI);
/** constant with value POSITIVE_INFINITY. */
public static final Force POSITIVE_INFINITY = new Force(Double.POSITIVE_INFINITY, ForceUnit.SI);
/** constant with value NEGATIVE_INFINITY. */
public static final Force NEGATIVE_INFINITY = new Force(Double.NEGATIVE_INFINITY, ForceUnit.SI);
/** constant with value MAX_VALUE. */
public static final Force POS_MAXVALUE = new Force(Double.MAX_VALUE, ForceUnit.SI);
/** constant with value -MAX_VALUE. */
public static final Force NEG_MAXVALUE = new Force(-Double.MAX_VALUE, ForceUnit.SI);
/**
* Construct Force scalar.
* @param value double value
* @param unit unit for the double value
*/
public Force(final double value, final ForceUnit unit)
{
super(value, unit);
}
/**
* Construct Force scalar.
* @param value Scalar from which to construct this instance
*/
public Force(final Force value)
{
super(value);
}
/** {@inheritDoc} */
@Override
public final Force instantiateRel(final double value, final ForceUnit unit)
{
return new Force(value, unit);
}
/**
* Construct Force scalar.
* @param value double value in SI units
* @return the new scalar with the SI value
*/
public static final Force createSI(final double value)
{
return new Force(value, ForceUnit.SI);
}
/**
* Interpolate between two values.
* @param zero the low value
* @param one the high value
* @param ratio the ratio between 0 and 1, inclusive
* @return a Scalar at the ratio between
*/
public static Force interpolate(final Force zero, final Force one, final double ratio)
{
return new Force(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getUnit()) * ratio, zero.getUnit());
}
/**
* Return the maximum value of two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @return the maximum value of two relative scalars
*/
public static Force max(final Force r1, final Force r2)
{
return (r1.gt(r2)) ? r1 : r2;
}
/**
* Return the maximum value of more than two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @param rn the other scalars
* @return the maximum value of more than two relative scalars
*/
public static Force max(final Force r1, final Force r2, final Force... rn)
{
Force maxr = (r1.gt(r2)) ? r1 : r2;
for (Force r : rn)
{
if (r.gt(maxr))
{
maxr = r;
}
}
return maxr;
}
/**
* Return the minimum value of two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @return the minimum value of two relative scalars
*/
public static Force min(final Force r1, final Force r2)
{
return (r1.lt(r2)) ? r1 : r2;
}
/**
* Return the minimum value of more than two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @param rn the other scalars
* @return the minimum value of more than two relative scalars
*/
public static Force min(final Force r1, final Force r2, final Force... rn)
{
Force minr = (r1.lt(r2)) ? r1 : r2;
for (Force r : rn)
{
if (r.lt(minr))
{
minr = r;
}
}
return minr;
}
/**
* Calculate the division of Force and Force, which results in a Dimensionless scalar.
* @param v Force scalar
* @return Dimensionless scalar as a division of Force and Force
*/
public final Dimensionless divideBy(final Force v)
{
return new Dimensionless(this.si / v.si, DimensionlessUnit.SI);
}
/**
* Calculate the multiplication of Force and Length, which results in a Energy scalar.
* @param v Force scalar
* @return Energy scalar as a multiplication of Force and Length
*/
public final Energy multiplyBy(final Length v)
{
return new Energy(this.si * v.si, EnergyUnit.SI);
}
/**
* Calculate the division of Force and LinearDensity, which results in a Energy scalar.
* @param v Force scalar
* @return Energy scalar as a division of Force and LinearDensity
*/
public final Energy divideBy(final LinearDensity v)
{
return new Energy(this.si / v.si, EnergyUnit.SI);
}
/**
* Calculate the division of Force and Energy, which results in a LinearDensity scalar.
* @param v Force scalar
* @return LinearDensity scalar as a division of Force and Energy
*/
public final LinearDensity divideBy(final Energy v)
{
return new LinearDensity(this.si / v.si, LinearDensityUnit.SI);
}
/**
* Calculate the multiplication of Force and Speed, which results in a Power scalar.
* @param v Force scalar
* @return Power scalar as a multiplication of Force and Speed
*/
public final Power multiplyBy(final Speed v)
{
return new Power(this.si * v.si, PowerUnit.SI);
}
/**
* Calculate the division of Force and Mass, which results in a Acceleration scalar.
* @param v Force scalar
* @return Acceleration scalar as a division of Force and Mass
*/
public final Acceleration divideBy(final Mass v)
{
return new Acceleration(this.si / v.si, AccelerationUnit.SI);
}
/**
* Calculate the division of Force and Acceleration, which results in a Mass scalar.
* @param v Force scalar
* @return Mass scalar as a division of Force and Acceleration
*/
public final Mass divideBy(final Acceleration v)
{
return new Mass(this.si / v.si, MassUnit.SI);
}
/**
* Calculate the division of Force and Area, which results in a Pressure scalar.
* @param v Force scalar
* @return Pressure scalar as a division of Force and Area
*/
public final Pressure divideBy(final Area v)
{
return new Pressure(this.si / v.si, PressureUnit.SI);
}
/**
* Calculate the division of Force and Pressure, which results in a Area scalar.
* @param v Force scalar
* @return Area scalar as a division of Force and Pressure
*/
public final Area divideBy(final Pressure v)
{
return new Area(this.si / v.si, AreaUnit.SI);
}
}