ElectricalCurrent.java
package org.djunits.value.vdouble.scalar;
import org.djunits.unit.DimensionlessUnit;
import org.djunits.unit.ElectricalChargeUnit;
import org.djunits.unit.ElectricalCurrentUnit;
import org.djunits.unit.ElectricalPotentialUnit;
import org.djunits.unit.PowerUnit;
/**
* Easy access methods for the ElectricalCurrent DoubleScalar, which is relative by definition. Instead of:
*
* <pre>
* DoubleScalar.Rel<ElectricalCurrentUnit> value = new DoubleScalar.Rel<ElectricalCurrentUnit>(100.0, ElectricalCurrentUnit.SI);
* </pre>
*
* we can now write:
*
* <pre>
* ElectricalCurrent value = new ElectricalCurrent(100.0, ElectricalCurrentUnit.SI);
* </pre>
*
* The compiler will automatically recognize which units belong to which quantity, and whether the quantity type and the unit
* used are compatible.
* <p>
* Copyright (c) 2013-2018 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
* BSD-style license. See <a href="http://djunits.org/docs/license.html">DJUNITS License</a>.
* <p>
* $LastChangedDate: 2018-01-28 03:17:44 +0100 (Sun, 28 Jan 2018) $, @version $Revision: 256 $, by $Author: averbraeck $,
* initial version Sep 5, 2015 <br>
* @author <a href="http://www.tbm.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="http://www.tudelft.nl/pknoppers">Peter Knoppers</a>
*/
public class ElectricalCurrent extends AbstractDoubleScalarRel<ElectricalCurrentUnit, ElectricalCurrent>
{
/** */
private static final long serialVersionUID = 20150905L;
/** constant with value zero. */
public static final ElectricalCurrent ZERO = new ElectricalCurrent(0.0, ElectricalCurrentUnit.SI);
/** constant with value NaN. */
@SuppressWarnings("checkstyle:constantname")
public static final ElectricalCurrent NaN = new ElectricalCurrent(Double.NaN, ElectricalCurrentUnit.SI);
/** constant with value POSITIVE_INFINITY. */
public static final ElectricalCurrent POSITIVE_INFINITY =
new ElectricalCurrent(Double.POSITIVE_INFINITY, ElectricalCurrentUnit.SI);
/** constant with value NEGATIVE_INFINITY. */
public static final ElectricalCurrent NEGATIVE_INFINITY =
new ElectricalCurrent(Double.NEGATIVE_INFINITY, ElectricalCurrentUnit.SI);
/** constant with value MAX_VALUE. */
public static final ElectricalCurrent POS_MAXVALUE = new ElectricalCurrent(Double.MAX_VALUE, ElectricalCurrentUnit.SI);
/** constant with value -MAX_VALUE. */
public static final ElectricalCurrent NEG_MAXVALUE = new ElectricalCurrent(-Double.MAX_VALUE, ElectricalCurrentUnit.SI);
/**
* Construct ElectricalCurrent scalar.
* @param value double value
* @param unit unit for the double value
*/
public ElectricalCurrent(final double value, final ElectricalCurrentUnit unit)
{
super(value, unit);
}
/**
* Construct ElectricalCurrent scalar.
* @param value Scalar from which to construct this instance
*/
public ElectricalCurrent(final ElectricalCurrent value)
{
super(value);
}
/** {@inheritDoc} */
@Override
public final ElectricalCurrent instantiateRel(final double value, final ElectricalCurrentUnit unit)
{
return new ElectricalCurrent(value, unit);
}
/**
* Construct ElectricalCurrent scalar.
* @param value double value in SI units
* @return the new scalar with the SI value
*/
public static final ElectricalCurrent createSI(final double value)
{
return new ElectricalCurrent(value, ElectricalCurrentUnit.SI);
}
/**
* Interpolate between two values.
* @param zero the low value
* @param one the high value
* @param ratio the ratio between 0 and 1, inclusive
* @return a Scalar at the ratio between
*/
public static ElectricalCurrent interpolate(final ElectricalCurrent zero, final ElectricalCurrent one, final double ratio)
{
return new ElectricalCurrent(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getUnit()) * ratio, zero.getUnit());
}
/**
* Return the maximum value of two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @return the maximum value of two relative scalars
*/
public static ElectricalCurrent max(final ElectricalCurrent r1, final ElectricalCurrent r2)
{
return (r1.gt(r2)) ? r1 : r2;
}
/**
* Return the maximum value of more than two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @param rn the other scalars
* @return the maximum value of more than two relative scalars
*/
public static ElectricalCurrent max(final ElectricalCurrent r1, final ElectricalCurrent r2, final ElectricalCurrent... rn)
{
ElectricalCurrent maxr = (r1.gt(r2)) ? r1 : r2;
for (ElectricalCurrent r : rn)
{
if (r.gt(maxr))
{
maxr = r;
}
}
return maxr;
}
/**
* Return the minimum value of two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @return the minimum value of two relative scalars
*/
public static ElectricalCurrent min(final ElectricalCurrent r1, final ElectricalCurrent r2)
{
return (r1.lt(r2)) ? r1 : r2;
}
/**
* Return the minimum value of more than two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @param rn the other scalars
* @return the minimum value of more than two relative scalars
*/
public static ElectricalCurrent min(final ElectricalCurrent r1, final ElectricalCurrent r2, final ElectricalCurrent... rn)
{
ElectricalCurrent minr = (r1.lt(r2)) ? r1 : r2;
for (ElectricalCurrent r : rn)
{
if (r.lt(minr))
{
minr = r;
}
}
return minr;
}
/**
* Calculate the division of ElectricalCurrent and ElectricalCurrent, which results in a Dimensionless scalar.
* @param v ElectricalCurrent scalar
* @return Dimensionless scalar as a division of ElectricalCurrent and ElectricalCurrent
*/
public final Dimensionless divideBy(final ElectricalCurrent v)
{
return new Dimensionless(this.si / v.si, DimensionlessUnit.SI);
}
/**
* Calculate the multiplication of ElectricalCurrent and ElectricalPotential, which results in a Power scalar.
* @param v ElectricalCurrent scalar
* @return Power scalar as a multiplication of ElectricalCurrent and ElectricalPotential
*/
public final Power multiplyBy(final ElectricalPotential v)
{
return new Power(this.si * v.si, PowerUnit.SI);
}
/**
* Calculate the multiplication of ElectricalCurrent and Duration, which results in a ElectricalCharge scalar.
* @param v ElectricalCurrent scalar
* @return ElectricalCharge scalar as a multiplication of ElectricalCurrent and Duration
*/
public final ElectricalCharge multiplyBy(final Duration v)
{
return new ElectricalCharge(this.si * v.si, ElectricalChargeUnit.SI);
}
/**
* Calculate the multiplication of ElectricalCurrent and ElectricalResistance, which results in a ElectricalPotential
* scalar.
* @param v ElectricalCurrent scalar
* @return ElectricalPotential scalar as a multiplication of ElectricalCurrent and ElectricalResistance
*/
public final ElectricalPotential multiplyBy(final ElectricalResistance v)
{
return new ElectricalPotential(this.si * v.si, ElectricalPotentialUnit.SI);
}
}