View Javadoc
1   package org.djunits.value.vfloat.scalar;
2   
3   import java.util.Locale;
4   
5   import org.djunits.unit.DimensionlessUnit;
6   import org.djunits.unit.ForceUnit;
7   import org.djunits.unit.FrequencyUnit;
8   import org.djunits.unit.LengthUnit;
9   import org.djunits.unit.LinearDensityUnit;
10  import org.djunits.value.vfloat.scalar.base.AbstractFloatScalarRel;
11  import org.djutils.base.NumberParser;
12  import org.djutils.exceptions.Throw;
13  
14  import jakarta.annotation.Generated;
15  
16  /**
17   * Easy access methods for the FloatLinearDensity FloatScalar, which is relative by definition.
18   * <p>
19   * Copyright (c) 2013-2023 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
20   * BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
21   * </p>
22   * @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
23   * @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
24   */
25  @Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2023-04-30T13:59:27.633664900Z")
26  public class FloatLinearDensity extends AbstractFloatScalarRel<LinearDensityUnit, FloatLinearDensity>
27  {
28      /** */
29      private static final long serialVersionUID = 20150901L;
30  
31      /** Constant with value zero. */
32      public static final FloatLinearDensity ZERO = new FloatLinearDensity(0.0f, LinearDensityUnit.SI);
33  
34      /** Constant with value one. */
35      public static final FloatLinearDensity ONE = new FloatLinearDensity(1.0f, LinearDensityUnit.SI);
36  
37      /** Constant with value NaN. */
38      @SuppressWarnings("checkstyle:constantname")
39      public static final FloatLinearDensity NaN = new FloatLinearDensity(Float.NaN, LinearDensityUnit.SI);
40  
41      /** Constant with value POSITIVE_INFINITY. */
42      public static final FloatLinearDensity POSITIVE_INFINITY =
43              new FloatLinearDensity(Float.POSITIVE_INFINITY, LinearDensityUnit.SI);
44  
45      /** Constant with value NEGATIVE_INFINITY. */
46      public static final FloatLinearDensity NEGATIVE_INFINITY =
47              new FloatLinearDensity(Float.NEGATIVE_INFINITY, LinearDensityUnit.SI);
48  
49      /** Constant with value MAX_VALUE. */
50      public static final FloatLinearDensity POS_MAXVALUE = new FloatLinearDensity(Float.MAX_VALUE, LinearDensityUnit.SI);
51  
52      /** Constant with value -MAX_VALUE. */
53      public static final FloatLinearDensity NEG_MAXVALUE = new FloatLinearDensity(-Float.MAX_VALUE, LinearDensityUnit.SI);
54  
55      /**
56       * Construct FloatLinearDensity scalar.
57       * @param value float; the float value
58       * @param unit unit for the float value
59       */
60      public FloatLinearDensity(final float value, final LinearDensityUnit unit)
61      {
62          super(value, unit);
63      }
64  
65      /**
66       * Construct FloatLinearDensity scalar.
67       * @param value Scalar from which to construct this instance
68       */
69      public FloatLinearDensity(final FloatLinearDensity value)
70      {
71          super(value);
72      }
73  
74      /**
75       * Construct FloatLinearDensity scalar using a double value.
76       * @param value double; the double value
77       * @param unit unit for the resulting float value
78       */
79      public FloatLinearDensity(final double value, final LinearDensityUnit unit)
80      {
81          super((float) value, unit);
82      }
83  
84      /** {@inheritDoc} */
85      @Override
86      public final FloatLinearDensity instantiateRel(final float value, final LinearDensityUnit unit)
87      {
88          return new FloatLinearDensity(value, unit);
89      }
90  
91      /**
92       * Construct FloatLinearDensity scalar.
93       * @param value float; the float value in SI units
94       * @return the new scalar with the SI value
95       */
96      public static final FloatLinearDensity instantiateSI(final float value)
97      {
98          return new FloatLinearDensity(value, LinearDensityUnit.SI);
99      }
100 
101     /**
102      * Interpolate between two values.
103      * @param zero the low value
104      * @param one the high value
105      * @param ratio double; the ratio between 0 and 1, inclusive
106      * @return a Scalar at the ratio between
107      */
108     public static FloatLinearDensity interpolate(final FloatLinearDensity zero, final FloatLinearDensity one, final float ratio)
109     {
110         return new FloatLinearDensity(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getDisplayUnit()) * ratio,
111                 zero.getDisplayUnit());
112     }
113 
114     /**
115      * Return the maximum value of two relative scalars.
116      * @param r1 the first scalar
117      * @param r2 the second scalar
118      * @return the maximum value of two relative scalars
119      */
120     public static FloatLinearDensity max(final FloatLinearDensity r1, final FloatLinearDensity r2)
121     {
122         return r1.gt(r2) ? r1 : r2;
123     }
124 
125     /**
126      * Return the maximum value of more than two relative scalars.
127      * @param r1 the first scalar
128      * @param r2 the second scalar
129      * @param rn the other scalars
130      * @return the maximum value of more than two relative scalars
131      */
132     public static FloatLinearDensity max(final FloatLinearDensity r1, final FloatLinearDensity r2,
133             final FloatLinearDensity... rn)
134     {
135         FloatLinearDensity maxr = r1.gt(r2) ? r1 : r2;
136         for (FloatLinearDensity r : rn)
137         {
138             if (r.gt(maxr))
139             {
140                 maxr = r;
141             }
142         }
143         return maxr;
144     }
145 
146     /**
147      * Return the minimum value of two relative scalars.
148      * @param r1 the first scalar
149      * @param r2 the second scalar
150      * @return the minimum value of two relative scalars
151      */
152     public static FloatLinearDensity min(final FloatLinearDensity r1, final FloatLinearDensity r2)
153     {
154         return r1.lt(r2) ? r1 : r2;
155     }
156 
157     /**
158      * Return the minimum value of more than two relative scalars.
159      * @param r1 the first scalar
160      * @param r2 the second scalar
161      * @param rn the other scalars
162      * @return the minimum value of more than two relative scalars
163      */
164     public static FloatLinearDensity min(final FloatLinearDensity r1, final FloatLinearDensity r2,
165             final FloatLinearDensity... rn)
166     {
167         FloatLinearDensity minr = r1.lt(r2) ? r1 : r2;
168         for (FloatLinearDensity r : rn)
169         {
170             if (r.lt(minr))
171             {
172                 minr = r;
173             }
174         }
175         return minr;
176     }
177 
178     /**
179      * Returns a FloatLinearDensity representation of a textual representation of a value with a unit. The String representation
180      * that can be parsed is the double value in the unit, followed by a localized or English abbreviation of the unit. Spaces
181      * are allowed, but not required, between the value and the unit.
182      * @param text String; the textual representation to parse into a FloatLinearDensity
183      * @return FloatLinearDensity; the Scalar representation of the value in its unit
184      * @throws IllegalArgumentException when the text cannot be parsed
185      * @throws NullPointerException when the text argument is null
186      */
187     public static FloatLinearDensity valueOf(final String text)
188     {
189         Throw.whenNull(text, "Error parsing FloatLinearDensity: text to parse is null");
190         Throw.when(text.length() == 0, IllegalArgumentException.class, "Error parsing FloatLinearDensity: empty text to parse");
191         try
192         {
193             NumberParser numberParser = new NumberParser().lenient().trailing();
194             float f = numberParser.parseFloat(text);
195             String unitString = text.substring(numberParser.getTrailingPosition()).trim();
196             LinearDensityUnit unit = LinearDensityUnit.BASE.getUnitByAbbreviation(unitString);
197             if (unit == null)
198                 throw new IllegalArgumentException("Unit " + unitString + " not found");
199             return new FloatLinearDensity(f, unit);
200         }
201         catch (Exception exception)
202         {
203             throw new IllegalArgumentException("Error parsing FloatLinearDensity from " + text + " using Locale "
204                     + Locale.getDefault(Locale.Category.FORMAT), exception);
205         }
206     }
207 
208     /**
209      * Returns a FloatLinearDensity based on a value and the textual representation of the unit, which can be localized.
210      * @param value double; the value to use
211      * @param unitString String; the textual representation of the unit
212      * @return FloatLinearDensity; the Scalar representation of the value in its unit
213      * @throws IllegalArgumentException when the unit cannot be parsed or is incorrect
214      * @throws NullPointerException when the unitString argument is null
215      */
216     public static FloatLinearDensity of(final float value, final String unitString)
217     {
218         Throw.whenNull(unitString, "Error parsing FloatLinearDensity: unitString is null");
219         Throw.when(unitString.length() == 0, IllegalArgumentException.class,
220                 "Error parsing FloatLinearDensity: empty unitString");
221         LinearDensityUnit unit = LinearDensityUnit.BASE.getUnitByAbbreviation(unitString);
222         if (unit != null)
223         {
224             return new FloatLinearDensity(value, unit);
225         }
226         throw new IllegalArgumentException("Error parsing FloatLinearDensity with unit " + unitString);
227     }
228 
229     /**
230      * Calculate the division of FloatLinearDensity and FloatLinearDensity, which results in a FloatDimensionless scalar.
231      * @param v FloatLinearDensity; scalar
232      * @return FloatDimensionless; scalar as a division of FloatLinearDensity and FloatLinearDensity
233      */
234     public final FloatDimensionless divide(final FloatLinearDensity v)
235     {
236         return new FloatDimensionless(this.si / v.si, DimensionlessUnit.SI);
237     }
238 
239     /**
240      * Calculate the multiplication of FloatLinearDensity and FloatLength, which results in a FloatDimensionless scalar.
241      * @param v FloatLinearDensity; scalar
242      * @return FloatDimensionless; scalar as a multiplication of FloatLinearDensity and FloatLength
243      */
244     public final FloatDimensionless times(final FloatLength v)
245     {
246         return new FloatDimensionless(this.si * v.si, DimensionlessUnit.SI);
247     }
248 
249     /**
250      * Calculate the multiplication of FloatLinearDensity and FloatArea, which results in a FloatLength scalar.
251      * @param v FloatLinearDensity; scalar
252      * @return FloatLength; scalar as a multiplication of FloatLinearDensity and FloatArea
253      */
254     public final FloatLength times(final FloatArea v)
255     {
256         return new FloatLength(this.si * v.si, LengthUnit.SI);
257     }
258 
259     /**
260      * Calculate the multiplication of FloatLinearDensity and FloatEnergy, which results in a FloatForce scalar.
261      * @param v FloatLinearDensity; scalar
262      * @return FloatForce; scalar as a multiplication of FloatLinearDensity and FloatEnergy
263      */
264     public final FloatForce times(final FloatEnergy v)
265     {
266         return new FloatForce(this.si * v.si, ForceUnit.SI);
267     }
268 
269     /**
270      * Calculate the multiplication of FloatLinearDensity and FloatSpeed, which results in a FloatFrequency scalar.
271      * @param v FloatLinearDensity; scalar
272      * @return FloatFrequency; scalar as a multiplication of FloatLinearDensity and FloatSpeed
273      */
274     public final FloatFrequency times(final FloatSpeed v)
275     {
276         return new FloatFrequency(this.si * v.si, FrequencyUnit.SI);
277     }
278 
279     /** {@inheritDoc} */
280     @Override
281     public FloatLength reciprocal()
282     {
283         return FloatLength.instantiateSI(1.0f / this.si);
284     }
285 
286 }