View Javadoc
1   package org.djunits.value.vfloat.scalar;
2   
3   import java.util.Locale;
4   
5   import org.djunits.unit.AreaUnit;
6   import org.djunits.unit.DimensionlessUnit;
7   import org.djunits.unit.FlowMassUnit;
8   import org.djunits.unit.FlowVolumeUnit;
9   import org.djunits.unit.FrequencyUnit;
10  import org.djunits.unit.SpeedUnit;
11  import org.djunits.unit.VolumeUnit;
12  import org.djunits.value.vfloat.scalar.base.AbstractFloatScalarRel;
13  import org.djunits.value.vfloat.scalar.base.FloatScalar;
14  import org.djutils.base.NumberParser;
15  import org.djutils.exceptions.Throw;
16  
17  import jakarta.annotation.Generated;
18  
19  /**
20   * Easy access methods for the FloatFlowVolume FloatScalar, which is relative by definition.
21   * <p>
22   * Copyright (c) 2013-2023 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
23   * BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
24   * </p>
25   * @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
26   * @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
27   */
28  @Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2023-04-30T13:59:27.633664900Z")
29  public class FloatFlowVolume extends AbstractFloatScalarRel<FlowVolumeUnit, FloatFlowVolume>
30  {
31      /** */
32      private static final long serialVersionUID = 20150901L;
33  
34      /** Constant with value zero. */
35      public static final FloatFlowVolume ZERO = new FloatFlowVolume(0.0f, FlowVolumeUnit.SI);
36  
37      /** Constant with value one. */
38      public static final FloatFlowVolume ONE = new FloatFlowVolume(1.0f, FlowVolumeUnit.SI);
39  
40      /** Constant with value NaN. */
41      @SuppressWarnings("checkstyle:constantname")
42      public static final FloatFlowVolume NaN = new FloatFlowVolume(Float.NaN, FlowVolumeUnit.SI);
43  
44      /** Constant with value POSITIVE_INFINITY. */
45      public static final FloatFlowVolume POSITIVE_INFINITY = new FloatFlowVolume(Float.POSITIVE_INFINITY, FlowVolumeUnit.SI);
46  
47      /** Constant with value NEGATIVE_INFINITY. */
48      public static final FloatFlowVolume NEGATIVE_INFINITY = new FloatFlowVolume(Float.NEGATIVE_INFINITY, FlowVolumeUnit.SI);
49  
50      /** Constant with value MAX_VALUE. */
51      public static final FloatFlowVolume POS_MAXVALUE = new FloatFlowVolume(Float.MAX_VALUE, FlowVolumeUnit.SI);
52  
53      /** Constant with value -MAX_VALUE. */
54      public static final FloatFlowVolume NEG_MAXVALUE = new FloatFlowVolume(-Float.MAX_VALUE, FlowVolumeUnit.SI);
55  
56      /**
57       * Construct FloatFlowVolume scalar.
58       * @param value float; the float value
59       * @param unit unit for the float value
60       */
61      public FloatFlowVolume(final float value, final FlowVolumeUnit unit)
62      {
63          super(value, unit);
64      }
65  
66      /**
67       * Construct FloatFlowVolume scalar.
68       * @param value Scalar from which to construct this instance
69       */
70      public FloatFlowVolume(final FloatFlowVolume value)
71      {
72          super(value);
73      }
74  
75      /**
76       * Construct FloatFlowVolume scalar using a double value.
77       * @param value double; the double value
78       * @param unit unit for the resulting float value
79       */
80      public FloatFlowVolume(final double value, final FlowVolumeUnit unit)
81      {
82          super((float) value, unit);
83      }
84  
85      /** {@inheritDoc} */
86      @Override
87      public final FloatFlowVolume instantiateRel(final float value, final FlowVolumeUnit unit)
88      {
89          return new FloatFlowVolume(value, unit);
90      }
91  
92      /**
93       * Construct FloatFlowVolume scalar.
94       * @param value float; the float value in SI units
95       * @return the new scalar with the SI value
96       */
97      public static final FloatFlowVolume instantiateSI(final float value)
98      {
99          return new FloatFlowVolume(value, FlowVolumeUnit.SI);
100     }
101 
102     /**
103      * Interpolate between two values.
104      * @param zero the low value
105      * @param one the high value
106      * @param ratio double; the ratio between 0 and 1, inclusive
107      * @return a Scalar at the ratio between
108      */
109     public static FloatFlowVolume interpolate(final FloatFlowVolume zero, final FloatFlowVolume one, final float ratio)
110     {
111         return new FloatFlowVolume(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getDisplayUnit()) * ratio,
112                 zero.getDisplayUnit());
113     }
114 
115     /**
116      * Return the maximum value of two relative scalars.
117      * @param r1 the first scalar
118      * @param r2 the second scalar
119      * @return the maximum value of two relative scalars
120      */
121     public static FloatFlowVolume max(final FloatFlowVolume r1, final FloatFlowVolume r2)
122     {
123         return r1.gt(r2) ? r1 : r2;
124     }
125 
126     /**
127      * Return the maximum value of more than two relative scalars.
128      * @param r1 the first scalar
129      * @param r2 the second scalar
130      * @param rn the other scalars
131      * @return the maximum value of more than two relative scalars
132      */
133     public static FloatFlowVolume max(final FloatFlowVolume r1, final FloatFlowVolume r2, final FloatFlowVolume... rn)
134     {
135         FloatFlowVolume maxr = r1.gt(r2) ? r1 : r2;
136         for (FloatFlowVolume r : rn)
137         {
138             if (r.gt(maxr))
139             {
140                 maxr = r;
141             }
142         }
143         return maxr;
144     }
145 
146     /**
147      * Return the minimum value of two relative scalars.
148      * @param r1 the first scalar
149      * @param r2 the second scalar
150      * @return the minimum value of two relative scalars
151      */
152     public static FloatFlowVolume min(final FloatFlowVolume r1, final FloatFlowVolume r2)
153     {
154         return r1.lt(r2) ? r1 : r2;
155     }
156 
157     /**
158      * Return the minimum value of more than two relative scalars.
159      * @param r1 the first scalar
160      * @param r2 the second scalar
161      * @param rn the other scalars
162      * @return the minimum value of more than two relative scalars
163      */
164     public static FloatFlowVolume min(final FloatFlowVolume r1, final FloatFlowVolume r2, final FloatFlowVolume... rn)
165     {
166         FloatFlowVolume minr = r1.lt(r2) ? r1 : r2;
167         for (FloatFlowVolume r : rn)
168         {
169             if (r.lt(minr))
170             {
171                 minr = r;
172             }
173         }
174         return minr;
175     }
176 
177     /**
178      * Returns a FloatFlowVolume representation of a textual representation of a value with a unit. The String representation
179      * that can be parsed is the double value in the unit, followed by a localized or English abbreviation of the unit. Spaces
180      * are allowed, but not required, between the value and the unit.
181      * @param text String; the textual representation to parse into a FloatFlowVolume
182      * @return FloatFlowVolume; the Scalar representation of the value in its unit
183      * @throws IllegalArgumentException when the text cannot be parsed
184      * @throws NullPointerException when the text argument is null
185      */
186     public static FloatFlowVolume valueOf(final String text)
187     {
188         Throw.whenNull(text, "Error parsing FloatFlowVolume: text to parse is null");
189         Throw.when(text.length() == 0, IllegalArgumentException.class, "Error parsing FloatFlowVolume: empty text to parse");
190         try
191         {
192             NumberParser numberParser = new NumberParser().lenient().trailing();
193             float f = numberParser.parseFloat(text);
194             String unitString = text.substring(numberParser.getTrailingPosition()).trim();
195             FlowVolumeUnit unit = FlowVolumeUnit.BASE.getUnitByAbbreviation(unitString);
196             if (unit == null)
197                 throw new IllegalArgumentException("Unit " + unitString + " not found");
198             return new FloatFlowVolume(f, unit);
199         }
200         catch (Exception exception)
201         {
202             throw new IllegalArgumentException(
203                     "Error parsing FloatFlowVolume from " + text + " using Locale " + Locale.getDefault(Locale.Category.FORMAT),
204                     exception);
205         }
206     }
207 
208     /**
209      * Returns a FloatFlowVolume based on a value and the textual representation of the unit, which can be localized.
210      * @param value double; the value to use
211      * @param unitString String; the textual representation of the unit
212      * @return FloatFlowVolume; the Scalar representation of the value in its unit
213      * @throws IllegalArgumentException when the unit cannot be parsed or is incorrect
214      * @throws NullPointerException when the unitString argument is null
215      */
216     public static FloatFlowVolume of(final float value, final String unitString)
217     {
218         Throw.whenNull(unitString, "Error parsing FloatFlowVolume: unitString is null");
219         Throw.when(unitString.length() == 0, IllegalArgumentException.class, "Error parsing FloatFlowVolume: empty unitString");
220         FlowVolumeUnit unit = FlowVolumeUnit.BASE.getUnitByAbbreviation(unitString);
221         if (unit != null)
222         {
223             return new FloatFlowVolume(value, unit);
224         }
225         throw new IllegalArgumentException("Error parsing FloatFlowVolume with unit " + unitString);
226     }
227 
228     /**
229      * Calculate the division of FloatFlowVolume and FloatFlowVolume, which results in a FloatDimensionless scalar.
230      * @param v FloatFlowVolume; scalar
231      * @return FloatDimensionless; scalar as a division of FloatFlowVolume and FloatFlowVolume
232      */
233     public final FloatDimensionless divide(final FloatFlowVolume v)
234     {
235         return new FloatDimensionless(this.si / v.si, DimensionlessUnit.SI);
236     }
237 
238     /**
239      * Calculate the multiplication of FloatFlowVolume and FloatDuration, which results in a FloatVolume scalar.
240      * @param v FloatFlowVolume; scalar
241      * @return FloatVolume; scalar as a multiplication of FloatFlowVolume and FloatDuration
242      */
243     public final FloatVolume times(final FloatDuration v)
244     {
245         return new FloatVolume(this.si * v.si, VolumeUnit.SI);
246     }
247 
248     /**
249      * Calculate the division of FloatFlowVolume and FloatFrequency, which results in a FloatVolume scalar.
250      * @param v FloatFlowVolume; scalar
251      * @return FloatVolume; scalar as a division of FloatFlowVolume and FloatFrequency
252      */
253     public final FloatVolume divide(final FloatFrequency v)
254     {
255         return new FloatVolume(this.si / v.si, VolumeUnit.SI);
256     }
257 
258     /**
259      * Calculate the division of FloatFlowVolume and FloatVolume, which results in a FloatFrequency scalar.
260      * @param v FloatFlowVolume; scalar
261      * @return FloatFrequency; scalar as a division of FloatFlowVolume and FloatVolume
262      */
263     public final FloatFrequency divide(final FloatVolume v)
264     {
265         return new FloatFrequency(this.si / v.si, FrequencyUnit.SI);
266     }
267 
268     /**
269      * Calculate the division of FloatFlowVolume and FloatArea, which results in a FloatSpeed scalar.
270      * @param v FloatFlowVolume; scalar
271      * @return FloatSpeed; scalar as a division of FloatFlowVolume and FloatArea
272      */
273     public final FloatSpeed divide(final FloatArea v)
274     {
275         return new FloatSpeed(this.si / v.si, SpeedUnit.SI);
276     }
277 
278     /**
279      * Calculate the division of FloatFlowVolume and FloatSpeed, which results in a FloatArea scalar.
280      * @param v FloatFlowVolume; scalar
281      * @return FloatArea; scalar as a division of FloatFlowVolume and FloatSpeed
282      */
283     public final FloatArea divide(final FloatSpeed v)
284     {
285         return new FloatArea(this.si / v.si, AreaUnit.SI);
286     }
287 
288     /**
289      * Calculate the multiplication of FloatFlowVolume and FloatDensity, which results in a FloatFlowMass scalar.
290      * @param v FloatFlowVolume; scalar
291      * @return FloatFlowMass; scalar as a multiplication of FloatFlowVolume and FloatDensity
292      */
293     public final FloatFlowMass times(final FloatDensity v)
294     {
295         return new FloatFlowMass(this.si * v.si, FlowMassUnit.SI);
296     }
297 
298     /** {@inheritDoc} */
299     @Override
300     public FloatSIScalar reciprocal()
301     {
302         return FloatScalar.divide(FloatDimensionless.ONE, this);
303     }
304 
305 }